A’ﬁfﬂ/é’/z . 77_,_ 205933

NBeS-1155 (- 50- 452

FINAL REPORT

Providing Access to Graphical User Interfaces: The Mercator Project

W RrY
July 25, 1996 S -6/~ < “
o </7
Elizabeth Mynatt : Y s
GVU Center / College of Computing L L]
Georgia Institute of Technology 1

TECHNICAL CONTACT: Craig E. Moore

SUMMARY:: The purpose of this work was to enhance the existing Mercator reseirch prototype to
a commercial software system. The goal was to develop a commercial screen reader software
system running on the Sun platform called UltraSonix. UltraSonix provides transparent access to
X applications based on the Motif toolkit. Motif is the most common toolkit for building X
applications; over 90 percent of X applications are built using Motif. UltraSonix allows

transparent access of "off-the-shelf” Motif applications by blind users; no modifications to the
applications are necessary to allow access.

Specific tasks included:
* Modifying Mercator to support Motif applications, including the Unix standard CDE
environment on Sun SPARCstations.

We have created a set of "rules” for translating Motif applications, as well as a set of
“templates” that govern how the system responds to the individual Motif widgets. The system
has been tested on the CDE environment running on Sun Solaris 2.4 and later.

This is described in the UltraSonix User Manual, Section 6.2.1.
* Porting Mercator to the DEC Alpha platform !

This task comprised three activities: resolving 64-bit portability issues, AudioFile support, and
resolving Solaris versus OSF/1 issues.

This activity was contingent upon receiving a DEC Alpha workstation from Digital Equipment
Corporation. DEC was unable to furnish us with a development workstation, so we were
unable to resolve 64-bit or OSF/1 porting issues. We did, however, port the audio layer of the
system to support DEC's AudioFile audio server.

AudioFile support is described in the UltraSonix Design Document, Section 9.4.5.

* Expanding the /O facilities to support voice input, Braille output as well as different speech
synthesis systems.

We have extended the I/O capabilities of the system to support multiple forms of speech, non-
speech, and Braille I/O. The system currently supports the Dectalk DTCO1, Dectalk Express,
and TruVoice speech synthesizers, NetAudio and AudioFile audio servers, and the Alva line of
Braille keyboards.

I/O subsystem internals are described in the UltraSonix Design Document, Section 9.0;
configuration of the I/O system is described in Section 9.3.4.

* Developing RAP (Remote Access Protocol) to support the use of the X11R6 standard
"disability access hooks" by external agents such as screen readers. This effort was performed
in conjunction with the X Consortium.

The Remote Access Protocol work is ongoing within the X Consortium. Pieces of the
proposal have been accepted as consortium standards however. The "ICE Rendezvous
Mechanism,"” which specifies how UltraSonix will initially connect to client applications, has
been accepted as a consortium standard and shipped in X11R6.1.

The ICE Rendezvous Mechanism work was undertaken in conjunction with Digital Equipment
Corporation, and is described in the UltraSonix Design Document, Section 4.3.

The current proposed RAP spec is described in the UltraSonix Design Document, Section 4.2
and 4.5.

As we were unable to complete the port to the DEC Alpha workstation, we undertook several other
tasks to improve the usability and configurability of the system.

Additional tasks completed:

* Console Support.
We extended the system to support “console" applications that act as "controlling terminals" for
the UltraSonix system. Two consoles ship with UltraSonix, a command-line version, and a
fully graphical version. These consoles allow easy end-user customization and control of
UltraSonix.
The consoles are described in the UltraSonix Design Document, Section 10.2.

» Extensible Text Filters.
UltraSonix now has the capability to support user-supplied "text filters" that control the output
of text in on-screen text areas. These can be easily defined by end-users to customize the
system.
Text filters are described in the UltraSonix Desi gn Document, Section 6.3.3

* Solaris Package Format Installation.
The UltraSonix software for Solaris ships in the standard "package" format. This format
allows easy installation and upgrade of the software, either from the command line or via the
Software Manager GUI tool that ships with Solaris.

Installation of package files is described in the UltraSonix User Manual, Section 2.2.

BACKGROUND: This project was undertaken to provide transparent access to X Windows

. application for people who are blind or severely visually impaired. This goal requires that the

- interactive visual interface be transformed into an interactive nonvisual interface. Software that
performs this type of task is typically called a screen reader. Much of the work in developing

.-Screen readers has been fueled by federal legislation requiring access to electronic equipment.

. —— e e e

Lty W

?
i
{
H
!
?
i
i
!

With the introduction of graphical user interfaces, the difficulty of providing access to visual
interfaces increased dramatically. This increase was due to the use of bit-mapped displays. The
screen reader can no longer utilize the framebuffer to determine the contents of the screen, but must
somehow trap the drawing requests originating from the graphical applications. Also, the use of
graphical objects or icons as well as the use of the mouse, make the job of transforming a graphical
interface into another modality extremely difficult. At this time access solutions for the Macintosh
and Microsoft Windows are available commercially. Only X Windows is still inaccessible,
although, this project has developed a screen reader for X Windows which only needs further
commercialization work to turn it into a commercial product.

APPROACH: Three major prototype systems were developed to investigate software architectures
for supporting transforming graphical interfaces into nonvisual interfaces. The final prototype
utilizes three extensions to X Windows to support screen reader access. Two of these extensions
were developed by this project. The first extension, called the Xt-based protocol, provides
asynchronous communication between the X application and the screen reader. This protocol can
be used to inform the screen reader when objects such as windows are created, when they are
modified, and when they are deleted (or unmapped) such as a dialog box disappearing from the
screen. The second extension, called the Xlib hook, is used to trap all information that bypasses
the Xt hooks. This information is typically low-level information such as simple drawing and text
rendering requests. These two hooks used together provide sufficient information to model a
graphical application. The last extension, called XTest, not developed by this project, is used to
simulate mouse input by a blind person using either keyboard or voice input. The information
about the X application is stored in an off-screen model. The data is stored according to the widget
hierarchy which was used to create the X application. This tree structure represents parent-child
relationships between the interface objects. Resources (or attributes) of the interface objects are
also stored. The screen reader (called Mercator) then provides translation rules for the different
types of interface objects. These rules specify how different interface objects, such as a push
button or menu, are represented and how they respond to user input.

ACCOMPLISHMENTS: The accomplishments of the Mercator project have been two-fold. First,
in order to provide transparent access to X applications, a software framework (or environment)
was developed which can monitor (watch for changes in the state of application), model (build a
useful off-screen model of the application interface) and translate (provide "rules" for translating
the graphical interface into a nonvisual interface) X applications as well as providing new ways to
send user input to the application. Second, this project has designed and informally evaluated a
"hear-and-feel” methodology for transforming graphical interfaces into nonvisual interfaces. This
task is important because little is known about effective ways to effectively represent graphical
interfaces for blind computer users. In summary, this project has demonstrated the feasibility of
providing access to X Windows for blind computer users. At this time, the researchers at Tech are
the only ones world-wide to build such a system. Tech has acted as champion and designer of the
disability access hooks for X Windows. These hooks are now part of the general X Windows
distribution. They support the use of screen readers as well as other applications which need to
monitor and configure the execution of a graphical X applications. Through publishing,
demonstration and presentations, Tech has successfully introduced new interaction techniques for
screen readers. These techniques, such as the use of auditory icons and hierarchical navi gation,
provide an intuitive and efficient inteiface to graphical applications for blind computer users. This
project establishes Georgia Tech as the primary researchers in this area. This recognition allowed
them to begin working with the newly formed DACX committee and the X Consortium on
modification to X Windows to support access for people with disabilities. The DACX (Disability
Action Committee on X) is a national, vendor-neutral committee which is helping design and
implement standard access solutions for people who want to use X Windows.

This commercialization effort is jointly supported by Georgia's Advanced Development
Technology Center's Faculty Commercialization Grant.

PUBLICATIONS AND PATENT APPLICATIONS:

Edwards, W.K., Liebeskind, S. H., Mynatt, E.D and Walker, W.D. A Remote Access Protocol
for the X Window System. In the Proceedings of the 9th Annual X Technical Conference, Boston,
MA, 1995.

Edwards, W K. and Mynatt, E.D. An Architecture for Transforming Graphical Interfaces. In the
Proceedings of UIST'94: User Interface Software and Technology Symposium, Marina Del Ray,
CA., Nov. 2-4, 1994, 39-47.

Edwards, W K., Mynatt, E.D. and Stockton, K., "Providing Access to Graphical User Interfaces
- Not Graphical Screens," Proceedings of ASSETS 94, November 1994.

Edwards, W. K. and Rodriguez, T. Runtime Translation of X Interfaces to Support Visually-
Impaired Users. In Proceedings of the 7th Annual X Technical Conference, Boston, MA, 1993.

e e

Johnson, E., Mynatt, E.D., Novak, M., and Walker, W., "Extending the User Interface for X
Windows to Include Persons with Physical and Sensory Disabilities: The DACX Project,” in the
: Proceedings of the Closing the Gap Conference, Minneapolis, MN, October 1993.

PO ——

Mynatt, E.D., "Transforming Graphical Interfaces into Auditory Interfaces for Blind Users," to
appear in ACM Transactions on Computer-Human Interaction, ACM, 1997.

Mynatt, E.D. and Edwards, W K., "Metaphors for Nonvisual Computing,” Extraordinary
Human-Computer Interaction, (editor) Dr. Alistair Edwards, University of York, Cambridge
University Press, 1996.

Mynatt, E. Transforming Graphical Interfaces into Auditory Interfaces. Doctoral Dissertation,
Georgia Institute of Technology, Atlanta. 1995.

Mynatt, E. Designing Auditory Icons, In Proceedings of the Second International Conference of
Auditory Display, ICAD "94, Sante Fe, New Mexico, 1995, pp. 109-120.

Mynatt, E.D., "Auditory Presentation of Graphical User Interfaces,” Auditory Display:
Sonification, Audification and Auditory Interfaces, Ed. G. Kramer, SFI Studies in the Sciences of
Complexity, Vol 18, Addison Wesley, 1994.

Mynatt, E.D. and Weber, G., "Nonvisual Presentation of Graphical User Interfaces: Contrasting
Two Approaches,” in the Proceedings of the 1994 ACM Conference on Human Factors in
Computing Systems (CHI'94).

Edwards, A., Edward, A.D.N. and Mynatt E.D., "Enabling Technology for Users with Special
Needs", in the Proceedings of INTERCHI'93, 1993 Conference on Human Factors in Computing
Systems and in the Proceedings of the 1994 ACM Conference on Human Factors in Computing
Systems (CHI'94). and in the Proceedings of the 1995 ACM Conference on Human Factors in
Computing Systems (CHI'95).

ATTACHMENTS: .

Transforming Graphical Interfaces into Auditory Interfaces for Blind Users (to appear in ACM
Transactions on Computer-Human Interaction, ACM, 1997).

UltraSonix Design Document.

UltraSonix User Manual.

Transforming Graphical Interfaces into
Auditory Interfaces for Blind Users

Elizabeth D. Mynart!
Xerox Palo Alto Research Center
mynatt@parc.xerox.com

ABSTRACT

While graphical interfaces have provided a host of advantages to the majority of computer users, they have
created a significant barrier to blind computer users. To meet the needs of these users, a methodology for
transforming graphical interfaces into nonvisual interfaces has been developed. In this design, the salient
components of graphical interfaces are transformed into auditory interfaces. Based on a hierarchical model
of the graphical interface, the auditory interface utilizes auditory icons to convey interface objects. Users
navigate the interface by traversing its hierarchical structure. This design results in a usable interface that
meets the needs of blind users while providing many of the benefits of graphical interfaces.

KEYWORDS auditory interfaces, auditory icons, blind users, assistive technology, UI models

INTRODUCTION

The problem addressed by this research can be simply stated, “What kind of interface would you design for
a blind person using a graphical user interface?” The requirements of blind users demand a general
mechanism for transforming graphical interfaces into nonvisual interfaces. Additionally, blind users would
like to enjoy the benefits of graphical user interfaces. The requirements of blind users coupled with the
benefits of graphical interfaces form a set of goals for the interface transformations. We will see that
commercial software for blind users fails to meet many of these goals. Specifically, the reliance on a spatial
model of the graphical interface impacts the usability of the resulting nonvisual interface.

The first step in transforming graphical interfaces into nonvisual interfaces is determining the contents of the
transformation. What is being converted from the graphical modality into the nonvisual modality? Graphical
interfaces are composed of groups of interface objects that are presented spatially on a two dimensional
display. These objects are characterized by a number of attributes that help convey their intended
functionality. The objects making up the graphical interface, their attributes and the relationships between
the objects comprise the contents of the interface transformation.

Next, it is necessary to model the contents of the transformation so that the model both captures the critical
characteristics of the graphical interfaces and provides the basis for an intuitive nonvisual interface.
Different models are possible. After comparing spatial, hierarchical and conversational models, we argue for

1. This work was conducted when the author was at the Georgia Institute of Technology.

il

Fhgaems s

—.

e e

2

utilizing a hierarchical model because it best captures the underlying structure of the graphical interface
without requiring application, domain-specific knowledge.

Given a hierarchical model of the graphical interface, the next step is designing the nonvisual interface. In
this design, we have focused on conveying the contents of the user interface, supporting navigation, and
providing controls for manipulating the interface. By using auditory cues akin to sound effects heard in real
world environments, we attempt to provide the benefits of iconic representations. These auditory icons[14]
convey the type of interface objects as well as attributes of the objects such as their size, selection state, and
spatial location. For example, a muffied, light switch sound conveys a greyed-out toggle button.

Users move from object to object based on the hierarchical model of the interface. Interruptability,
navigation shortcuts, and previews help alleviate the potential tedium of traversing a large structure.
Auditory feedback also helps users perceive changes in the interface based on their input or application
events. For example, rising and falling whistling sounds accompany the appearance and disappearance of
pop-up windows.

Assessments of this design are based on over four years of feedback from blind computer users as well as
controlled experiments with sighted users. We conclude this paper by evaluating this design against the goals
that we outlined for interface transformations. Although lacking in its ability to present information
spatially, this design results in a usable interface that provides many of the critical characteristics of
graphical interfaces. ¢

——

BACKGROUND

The GUI Problem

The 1990 paper “The Graphical User Interface: Crisis, Danger and Opportunity” [5] summarized an
overwhelming concern expressed by the blind community: a new type of visual interface threatened to erase
the progress made by the innovators of screen reader software. Such software (as the name implies) could
read the contents of a computer screen, allowing blind computer users equal access to the tools used by their
sighted colleagues. Whereas character-based screens were easily accessible, new graphical interfaces
presented a host of technological challenges. The contents of the screen were mere pixel values, the on or off
“dots” which form the basis of any bit-mapped display. The goal for screen reader providers was to develop
new methods for bringing the meaning of these picture-based interfaces to users who could not see them.

A S g, o o -

The crisis was imminent. Graphical user interfaces were quickly adopted by the sighted community as a
more intuitive interface. Ironically, these interfaces were deemed more accessible by the sighted population
because they seemed approachable for novice computer users. The danger was tangible in the forms of lost
Jobs, barriers to education, and the simple frustration of being left behind by the computer industry.

Much has changed since that article was published. Commercial screen reader interfaces now exist for two
of the three main graphical environments. But many blind users still do not view graphical interfaces as a
new opportunity. Screen readers designers, faced with the task of translating a complex, visual interface into
auditory or tactile output, have attempted to create one-to-one translations of the spatially arranged graphical
interfaces. Blind users have responded with difficulties in using these visually-oriented interfaces.

The Mercator Project at Georgia Tech addressed two untouched areas of work in the screen reader
community. First, no one had designed a screen reader for X Window applications, such as Motif
applications used in research, business and educational settings. Second, there was little work in alternate
representations of graphical interfaces that were not based on speech output and spatial organizations.

The implementation of Mercator is described in [11][12][13]. Briefly, the system provides the infrastructure
to monitor and model unmodified X applications while they are running. A collection of “hooks”! in the
Xlib and Xt Intrinsics libraries of the X Window System trap interesting events such as the creation of a push
button or the appearance of a window. The information gleaned from these hooks is transmitted to Mercator

3

which creates a model of the graphical interface based on the application’s widget hierarchy. Mercator also
provides facilities for creating interfaces to replace or augment the graphical interface. Interface behavior
can be specified in an interpreted language supporting prototyping and end-user customization.

An underlying assumption in the design of Mercator interfaces is the dominant use of auditory output.
Researchers have experienced limited success with tactile devices with the exception of braille output.
Additionally, a significant portion of people who are blind also suffer from diabetes which reduces their
sensitivity to tactile stimuli [17). Nevertheless Mercator includes a tactile component as well. For example,
since speech synthesizers are notoriously bad at reading source code, Mercator provides a Braille terminal as
an alternate means for presenting textual information

Requirements for GUI Access by Blind Users

The requirements for the auditory interface are driven by the need for blind users to work with their sighted
colleagues employing the same graphical applications. Without knowledge of the application domain, the
screen reader system must transform the contents of the graphical interface into a usable auditory interface.
By monitoring the execution of a graphical application, the screen reader creates a model of the application
interface and derives a complimentary auditory interface. The user’s interaction with the auditory interface is
forwarded to the graphical interface and the process continues as shown in the following figure.

Graphical Mercator
Application . > Screen Reader
Information
about GUI

Blind
User

—X

FIGURE 1: Simplified View of GUI to AUI Transformation

Simulated
User Input

Auditory
Interface

Graphical

Interface

The foremost critical requirement is transparent transformations of graphical interfaces. Modifying
individual applications does not address problems of providing access to a set of graphical applications. A
general mechanism for transforming any X Window application is needed. The ideal scenario is that blind
users running the screen reader on their systems should be able to use any X application without needing to
specially tailor the application interfaces.

To address this need, Mercator automatically transforms text-based, X Windows applications while they are
running, providing an auditory interface. This requirement for transparent transformations impacts the
design in two critical ways. First, there is no domain knowledge to inform the creation of the auditory
interface. Mercator is unaware of the functionality of the application, such as whether it is a word processor
or electronic mail tool, but is only aware of how the graphical interface is constructed. Second, this
transformation is done in “real-time”. There is no off-line processing or analysis of the graphical interface.

An implicit requirement for screen reader systems is that they facilitate collaboration between sighted and
blind colleagues. Blind users do not work in isolation from their sighted counterparts. Therefore it is
imperative that blind and sighted users be able to communicate about their use of application interfaces.

1. The “hooks” are now part of the standard X Windows System since X11R6. The protocol used to transmit
information trapped by the hooks to an external program is under consideration by the X Consortium.

4

In addition to reinforcing the need for transparent access, this requirement constrains the design of the
auditory interface. While an auditory interface to an application may be quite intuitive and usable, if it does
not express interface concepts similar to the graphical interface, it does not solve the collaboration need by
the blind computer user. Ideally a blind user should be able to ask a sighted user how to do something with
an application interface and be able to utilize directions expressed in terms of the graphical interface. This
ideal scenario is difficult to achieve, but the design goals of designing for collaboration versus designing for
intuitive auditory interaction conflict in interesting ways.

Within the range of graphical interfaces, this work focuses on the transformation of text-oriented graphical
interfaces such as electronic mail programs, word processors and spreadsheets. By choosing this area, we
are focusing on interfaces in which text is the primary object of interest and where text is manipulated
through the use of graphical controls. In contrast, applications such as drawing programs where graphics are
the primary objects of interest are not addressed in this work. This restriction is due to the additional
difficulty of representing pure graphical information in the auditory modality. Nevertheless the chosen
application set is sufficiently interesting since it represents applications that are commonly used.

Expressed as a general requirement, an additional need by blind computer users is to experience the benefits
of graphical interfaces enjoyed by their sighted counterparts, such as iconic representation and direct
manipulation. Below, we present goals for screen reader interface design based on the benefits of GUIs:

* Access to functionality

At a minimum, the user must be able to use the functions represented by the graphical interface. For
example, in a word processor where pull-down menus support operations for loading and saving files,
users would need an interface to this functionality. Some software vendors maintain that their
graphical applications are accessible to blind users because they provide a separate command-line
interface that can be read by older screen readers. Simply providing access to the same functionality
likely breaks the goal of supporting collaboration between blind and sighted users since they use a
distinctly different interface.

* lconic representations of interface objects
Graphical icons, from trashcans to push buttons, help the user assess the capabilities of an interface
by leveraging knowledge of the physical world. Visual atiributes of interface objects such as size and
highlighting also convey information to the user.

* Direct manipulation
Closely coupled with the benefit of iconic representation, is the benefit of direct manipulation. This
benefit is achieved when the user is able to directly interact with objects of interest to the task at hand,
and output in the interface is expressed via these objects[18].

* Spatial arrangement
Graphical interfaces allow the user to organize information in a 2 1/2D space. Contrast organizing a
desktop by maintaining lists of objects and categories of lists. Another benefit of spatial arrangement
is that it can leverage knowledge of the physical world. Sliders that support viewing portions of a
document capitalize on moving sheets of paper sideways and front-to-back in a stack.

* Constant presentation
A benefit of visual interfaces is that they exist in physical space that can be reviewed over time. This
advantage of the visual sensory system is capitalized in graphical interfaces. These displays serve as a
surrogate short-term memory for recalling the contents of the user interfaces.

We will see that these benefits are ordered from easiest to hardest for a screen reader system to provide. In
the following section, we briefly evaluate screen reader systems that allow blind users to interact with
representations of graphical interfaces.

Evaluation of Screen Reader Interfaces

There are two general classes of commercial screen readers that provide auditory interfaces for graphical
interfaces. The first class is dominated by a product called OutSpoken [1]. The primary characteristic of this
class is that the structure of the auditory interface is based primarily on the spatial layout of the graphical
interface. Users navigate the screen using the mouse or keyboard shortcuts. The interface uses synthesized
speech almost exclusively. At the basic level, the user moves the mouse cursor across the screen, and when
the cursor intersects a graphical object the speech synthesizer reads information about that object. An
auditory cue is used to convey moving across a window boundary.

Since OutSpoken relies heavily on optical character recognition (OCR) algorithms that are extended to
recognize graphical icons, this interface does not group icons as one might expect. Two examples of
OutSpoken'’s interface reveal its usability limitations,

In a grouping of controls, such as these in the following figure, the users must access the controls in terms of
their visual layout. For example to move from “Row” to “Selection”, the user must move down twice. There
is little information conveyed by this spatial layout, but the arrangement was chosen because it fit well
within the dialog box. The user could as easily move to the right twice. This interaction style requires blind
users to memorize visual layouts that conveys little meaning about the interface.

O Row
O Column
@ Selection

Shift Cells

 [Merge Cells
©Horizontally

O Vertically

FIGURE 2: OutSpoken Example of Row-Column Navigation

The conceptual model that underlies the OutSpoken interface is the arrangement of information in a row-
column format. This model was chosen because it is similar to previous text-oriented screen reader
interfaces. Because the OutSpoken interface imposes little hierarchy (windows are the only grouping
mechanism), moving through the objects in the above dialog would result in this order of spoken output:
Row, Insert, Column, Delete, Selection and so on. Users are confused by this interaction since the semantic
groupings that are obvious in the visual interface are not conveyed in the auditory interface

ScreenReader II by IBM, WindowBridge by SynthAVoice, and ProTalk by Hinter Joyce are products that
provide access to the Microsoft Windows environment. As representatives of the second class of screen
readers, these interfaces require the use of existing keyboard shortcuts provided by the Windows
environment. Like OutSpoken, these products use only synthesized speech and braille output.

The reliance on the Windows keyboard shortcuts creatce most of the usability problem with these screen
readers. First, while the shortcuts provide more structural information than OutSpoken, they are designed to
be augmented with the information in the visual display.

A more troublesome problem is that the shortcuts only allow the user to navigate to graphical objects that
accept user input. Areas such as greyed out buttons and message bars are “invisible.” In order to access read-
only information, the user must define view areas by a row-column position per application. The user can
then create keyboard macros to read the information at a particular view area. These view areas are defined
in a separate file or application profile, and this process requires the assistance of a sighted person.

MODELING GRAPHICAL INTERFACES

Determining the Contents of the interface Transformation

To motivate creating a model of a graphical interface, we examine a typical graphical interface as shown in
the following figure. The question to be answered at this stage is:

“What are the characteristics and components of this interface that are critical 1o its use?”

In contrast to the previous discussion on the advantages of graphical interfaces, during this section we need
to categorize information about graphical interfaces that will be stored in our model.

What are the objects?

A fundamental notion behind graphical interfaces is that the user directly interacts with things: objects or
interactors that can be manipulated by the user in a set number of ways. In the example, there are a number
of objects such as windows, radio buttons, push buttons, scroll bars, editable text areas, and read-only text
areas such as message bars. These objects form the basis for how we conceptualize a graphical interface.

Selected e e : S
radio , , . . S LA
button - DalouWI Save IM
= T . P Message bars
Current message headers, |] (read only
text)
G 2 Beth Mynatt Sun Nov 27 01:06 6/193 ancther dumwy ne3380e
0 3 Beth Myatt Sun Nov 27 00:58 12/283 Test message rumber three
0 4 Beth Mynatt Sun Nov 27 00:59 12/307 test message number five
0 S Beth Myratt Sun Nov 27 01:06 8/185 dusmey message
0 € Beth Mynatt Sun Nov 27 01:06 @139 reslly boring duwy messa
0 7 Beth Wynatt Sun Nov 27 01:03 12/298 test message rumber two
0 8 Beth Mynatt Sun Nov 27 01:06 8/132 boring dumay message
0 9 Beth Mynatt Sun Nov 27 01:06 8/192 boring dummy message
0 10 Beth Mynatt Sun Nov 27 01:04 12/281 test messege rumber four
0 11 Both Mynatt Sun Nov 27 01:05 12/277 test messege mumber one
b rext [oolete | useiete [sowe Upreserve [print . Pt:)sl.ll‘ b:nons
rewaail j| dow [reoly [cowoss || orire L matlre ggeglir
—PF e [fle [[et st [relp
Greyed- File Name: [/usora/b/beth/mbox
out pUSh Directory:]/Whn/bﬂh/fhruwﬁnuu/rc-ﬁ_
button :
' X Py
Smaller window
text area

FIGURE 3: Annotated Graphical Interface

What are attributes of the objects?

Most interface objects are characterized by a number of visual attributes that help clarify their use. For
example, many interactors can be highlighted (often indicating a current selection) and greyed out
(indicating that the object is unavailable for use).

The relative sizes of different objects may be informative. In the screenshot, one of the text areas is much
smaller than the others. This size indicates the type of text presented in this space, in this case, short
diagnostic messages. Other size attributes are related to collections of objects. For example, the four radio

10 be read from top to bottom, left 1o right, following Western reading conventions.

What are the affordances of the objects?

Objects in graphical interfaces can be categorized by their basic functionality. Many objects provide a means
to group other objects. In this example, both windows and boxes collect objects into meaningful groups.

relationships are expressed via grouping. For example, the four radijo buttons are not randomly scattered
throughout the interface but ure grouped together. In general, hierarchical relationships among objects

Another primary relationship is cause and effect. In the example, selecting the push button “reply” causes
the dialog box to be popped up. Selecting a message header causes the message to be displayed. If the
interface Tesponse time is short, the user will associate these objects as having a Cause-and-effect
relationship.

Ty Cues, it may appear that Wwe are discarding information in the graphical presentation.
For €xample, we may not attempt to present objects at specific X,y location, but we may use the x,y
coordinates to help determine the order of objects in the auditory interface. Likewise, we may not convey the
amount of overlap between partially occluded windows, but we wil] likely support the notion of focus in the
auditory interface.

Modeling the GUI

The next step in the design process is determining a model for graphical user interfaces. Since the model
impacts both the user interface as well as the systemn design and implementation, it is necessary for us to
consider the following questions when evaluating possible models:

* How well does this model capture important GUI characteristics?
* What kinds of auditory interfaces could be based on this model?
As an extreme example of a possible model, we could attempt to represent the GUI interface with musical

notation. Although it would be €asy to create an auditory interface based on musical notation, it would be
quite difficult, if not impossible, to represent GUI characteristics with musical notation,

During this discussion, we compare three types of potential conceptual models. These are:

* Spatial Models

The graphical interface is modeled as a 2 1/2 dimensional projection in space easily capturing aspects
of the GUI such as the spatial distribution of objects. This model is primarily used by commercial
screen readers.

* Hierarchical Models

capturing parent-child grouping relationships. Most phone-based auditory interfaces utilize
hierarchical interfaces implemented with menus.

* Conversational Models
The graphical interface is modeled as a dialogue where the user can converse with the auditory

interfaces. Natural language understanding coupled with voice recognition systems are used to
implement these interfaces.

Spatial Hierarchical Conversational
xmailtool “Read email”
“Delete message”
- “List appointments
Jor Tuesday”

Aratt
Mt
Monatt
Mnate
Apatt
Mratt
Mraet
Mpnate
et

next reply

FIGURE 4: Possible Conceptual Models for Graphical Interfaces

Assessing Spatial Models

Using spatial models to fepresent graphical interfaces is attractive since graphical interfaces are presented
using a spatial metaphor. The sighted user is presented with a spatially arranged picture of interface objects
that can stack on top of each other in a 2 1/2D fashion. Many of the advantages of graphical interfaces,

j
|
9

————

P o3 o F W S

10

discussed previously stem from their static, spatial presentation. Obviously representing the graphical
interface with a spatial model is not difficult, so the remaining Question is what type of auditory interface
could be based on this model.

First, as discussed during the review of screen reader interfaces, blind users find it difficult to work with
spatially arranged user interfaces. Many users conceptualize the interface based on its logical structure and

navigate physical spaces such as their home, one user likened working with a graphical interface with rying
to navigate a large, unknown room where it is “easy to get lost and become disoriented {71

suited for conveying discrete objects.

Given that there are previous examples of complex, hierarchical auditory interfaces, the primary question is
how well graphical interfaces can be modeled using a hierarchical structure. A tree-structure representation
of the graphical interface in Figure 3: "Annotated Graphical Interface"” is shown in the following figure. The
tree structure lends itself to representing the objects in their interface, as well as the parent-child
relationships between those objects. Cause-and-effect relationships can be modeled as additional links in the
structure. In the example, pushing the reply button causes the pop-up dialogue to appear.

A significant limitation of this model is that it does not capture visual attributes of the graphical interface.
Some representations of visual cues are possible. For instance, the ordering of objects in the structure can be

inability to explicitly represent all the visual characteristics of the graphical interface, These characteristics
can be stored as attributes of the objects in the hierarchical structure. The auditory interface would be
responsible for conveying these attributes, in addition to conveying the underlying model.

Assessing Conversational Models

Another class of auditory interfaces commonly uses conversational dialogues as the basis for the user
interfaces[21][26]. For example, both Stifelman’s Conversational VoiceNotes [28] and Yankelovich's
SpeechActs[29](30] utilize voice recognition technology as the primary means of input to an auditory
interface. VoiceNotes provides an interface to a hand-held notes organizer while SpeechActs provides an
interface to desktop applications such as email and calendar. Typical user input phrases are:

S

— . a

f
d

11

Xxmailtool

—— Parent-child relationship
Cause-effect relationship /\

main window pop-up

container

text
N
next r epiy

FIGURE 5: Partial Tree Structure Representation of Graphical Interface

container

send cancel

List notes for July 12th
New appointment with Jim Foley this Friday at 3pm

Both of these interfaces are replicating functionality that can be found in a graphical interface. SpeechActs is
actually a front-end for graphical desktop programs. Given that it is possible to create useful auditory
interfaces using conversational models, the remaining question is how does this model work with our goal of
modeling graphical user interfaces. There are two problems with using these models for our task:

* Requires Domain Knowledge

The example input phrases above illustrate that these interfaces rely on understanding the domain of
the application interfaces. In our automatic analysis of graphical interfaces, it is unlikely that we will
obtain sufficient information to build a domain-dependent dialogue.

* Interaction Significantly Different than Graphical Interface

Sighted users and blind users will not have the same building blocks for discussing how to operate an

interface since the conversational interface hides components of the GUI such as menus and buttons.
Choosing a Model!
We have based our representation of the graphical interface on a hierarchical conceptual model since best
captures the underlying structure of the graphical interface without requiring domain-specific knowledge of
the graphical application. The primary relationship represented in the hierarchical model is the parent-child
relationship between interface objects. These relationships appear to be the basis for how blind users
conceptualize graphical interfaces. In many ways, they are likely to be the basis for how all users
conceptualize graphical interfaces given the importance of structural information in this class of interfaces.
Spatial organizations are problematic since graphical interfaces typically generate spatial layouts based on
space-conserving constraints that are often confusing for blind users. Conversational models require domain
knowledge to capture the functionality specific to the application interface. This information would be
extremely difficult, if not impossible, to obtain from a generic X Windows application.

One important limitation of the hierarchical model is that it does not effectively capture the power of a
visual, spatial presentation. Two advantages of the visual interface are that the user can quickly recognize
interface objects from the bit mapped pictures on the screen, and that the user can quickly scan the collection
of onscreen objects. Therefore, two critical requirements of the design are that the user can quickly
recognize interface objects and that the user can quickly survey the contents of the interface.

Pt o7 1 W Y O S S

12

MERCATOR INTERFACE DESIGN
In this section, we describe the basic interface design for Mercator. The primary question that we address is:

Given the hierarchical model of the graphical interface, what auditory interface do we present
Jor a blind user?

The inherent disadvantage of all auditory interfaces is they are largely invisible. For this reason, a significant
portion of this design will focus on conveying the contents of the auditory interface. Users must be able to
determine the identity and attributes of the various objects that make up the auditory interface.

In addition to recognizing individual objects, the user must be able to navigate the space of the interface. The
controls for navigation must support the user’s mental model of the auditory interface. For example. moving
the mouse cursor across a graphical screen supports the notion of the interface as a picture in 2D space.
Navigation must be safe so that navigation is orthogonal to manipulating the user interface.

After users are able to navigate the auditory interface and identify the objects within it, they need the ability
to manipulate those objects to accomplish their tasks. The most common manipulation is the ability to
select an object whether it is a menu button or a text field. In the graphical interface, selection is generally
accomplished by clicking on a mouse button. When we manipulate an interface, changes in the interface
convey feedback as to the ramifications of our actions, The auditory interface must also provide conventions
for manipulating the interface and providing feedback to the user.

Conveying Auditory Objects

To convey the contents of the auditory interface, it is necessary to convey the types of objects in the interface
as well as attributes and affordances of those objects.

Conveying Object Identity

Numerous strategies for conveying objects in auditory interfaces have already been suggested by previous
work. Possible strategies include using speech, pure tones, earcons, or auditory icons. For example, an
auditory cue to convey a text-entry field could be:

* A synthesized voice saying “text-entry”

* A pure tone such as G-sharp (~ 415.3047 Hz)
* A musical timbre of a violin

* The sound of an manual typewriter

Each of these approaches has advantages and disadvantages. The speech message is unambiguous and
reasonably efficient, but may be confused with other speech messages, i.e. reading the label on the field. A
pure tone is easy to produce and takes minimal time to hear, but may be confused with other pure tones. Also
the mapping of the note G-sharp to a text-entry field would be difficult to remember. Various musical timbres
would also be easy to produce, and would be easier to discriminate than pure tones, but again, the mapping
from violin to text-entry is hardly intuitive.

This design is based on the premise that auditory icons [14] offer the most promise for producing
discriminable, intuitive mappings. In the previous example, the sound of an old-fashioned typewriter maps
easily to a text-entry field. The user is reminded of typing or entering tex.. In general, the use of auditory
icons mimics how information is conveyed in graphical interfaces. We recognize many objects in graphical
interfaces by their physical appearance. Sometimes concrete representations are used such as the picture of a
trashcan. Abstract icons also leverage our understanding of the physical world. Although Mouf push buttons
do not look like button controls in the physical world, they look pushable. Likewise, an auditory icon may
not sound like a real push button, but the sound may indicate an object that can be pushed.

Two alternate design strategies that were considered and discarded were using speech or earcons.
Synthesized speech is required for presenting textual information in the graphical interface. This information

13

is domain-dependent, such as the text in an electronic mail message or the labels on a pull down menu. By
relegating speech to domain-dependent information, and respectively relegating nonspeech cues to domain-
independent information, the user can more easily separate these classes of information'. The structured
combinations of musical sounds employed in earcons[2][3][4] have been successfully used in providing
access to mathematical equations for blind users[27]. That use of earcons was especially compelling since
the natural prosody for reading mathematical equations mapped well to the rhythm of presenting successive
earcons. In Mercator, the primary role of the auditory cues is to convey the types of objects in the graphical
interface. We concluded that iconic, everyday sounds would be more intuitive than abstract, musical sounds.

In Mercator, we use a set of auditory icons to convey the identity of various interface objects. Some auditory
icons are fairly concrete like the typewriter and the printer, while the sounds for various buttons are more
abstract. The following table provides a listing of some of the auditory icons used in Mercator. The selection
of sounds was based on a series of experiments exploring how people describe sounds and how they map
concepts in graphical interfaces to sounds. These experiments are discussed in [23])[24).

TABLE 1: Using Auditory Icons to Represent Interface Objects

Interface Object Sound

Editable text area
Read-only text area
Push button

Toggle button

Typewriter, multiple keystrokes
Printer printing out a line
Keypress (ca-chunk)

Pull chain light switch

Radio button Pa pop sound

Check box One pop sound

Window Tapping on glass (two taps)
Container Opening a door

Pop-up dialog Spring compressed then extended
Application Musical sound

Conveying Object Characteristics

From our model of the graphical interface, we know there are many characteristics of the interface objects
that we need to convey to the user. The use of auditory icons often serves to convey the affordances of the
objects as well. For example, the typewriter sound should convey the affordance of entering text Jjust as the
push button sound helps convey the notion of pushing. But there are other attributes of objects we need to
convey such as its label, whether it is greyed out, and its relative size.

Text-based attributes can be presented via synthesized speech. For example the auditory icon for a push
button can be presented simultaneously with its text label. Other attributes can be presented by modifying
the base auditory icon.

Auditory icons are not limited to simply reflecting categories of events and objects, but can be parameterized

to reflect their relevant dimensions as well. For example, the auditory icon for a file can be manipulated to .
convey the size of the file [15]. Gaver's techniques for parameterizing auditory icons are similar to the

filtears described by Ludwig, Pincever and Cohen [19][20]. We used the following filtears because they

could process sounds in real-time?:

1. Since speech sounds are often less ambiguous than nonspeech, everyday sounds, speech output plays a role in
supporting first-time users. We use redundant speech output to help users learn the meaning of the different
nonspeech cues. The design of user levels is discussed later in this paper.

14

* Muffling

High frequency energy in the auditory cue is removed, causing the cue to sound deeper in pitch with
reduced intensity.

* Thinning

Low frequency energy in the auditory cue is removed, causing the cue to sound higher in pitch with
increased intensity.

By combining these filtears with modifying the overall intensity of the sound, we can Create the impression
of an auditory object being selected or greyed out,

greyed out).
TABLE 2: Manipulating Auditory Icons to Convey Object Attributes

Object Attribute Description of Filter
Button controls Selection state (highlighted, Thinning and increase intensity for high-
normal, or greyed out) lighting, muffling and decrease intensity

for greyed-out

Text area Number of lines Lower pitch maps to greater number of
lines, use muffling or thinning

Container Numbser of children Lower pitch maps to greater number of
children, use muffling or thinning

Cursor ’ Location in serial order Lower pitch maps to greater number in
order, use muffling or thinning

Navigation

Another comparison to mouse navigation is that navigation must be safe in the sense that it is orthogonal to
manipulating the user interface. When Users move a mouse across the screen, the interface may respond to

2. Facilities for muffling and thinning audio samples, as well as for playing, mixing and interrupting sounds was
provided by NetAudio II, a tool developed by David Burgess {6).

—

15

give more information, but users are generally safe from triggering potentially harmful events such as
stopping or starting an application. To support this separation, the navigation controls need to be distinct
from the controls used to select or otherwise manipulate objects.

In Mercator, at the simplest level, the user uses the arrow keys on the numeric keypad to navigate a tree
structure that corresponds to the condensed, hierarchical model of the graphical interface. The user presses
up and down to move in and out of groups of objects and presses left and right to move within groups of
objects. When the user moves to an object, they hear the auditory icon (possibly filtered) for that object. If
the user attempts to move in a direction where no object exists, e.g. moving right when you are at the end of
a cluster of push buttons, they hear a simple error sound of a ball bouncing against a wall. The premise is
that the users reinforce their mental model of the auditory interface since the navigation is explicitly based
on the hierarchical structure.

For the graphical interface pictured in Figure 3: "Annotated Graphical Interface” whose respective tree
structure in shown below, a user navigating from the top of the structure to the push button “delete” would
hear:

[i] (Down) Tapping on glass

. xmailtool
(Down) Opening door m
(Right) Printer “System Mail Box” v
(Right) Printer “Current message header” main window

(Right) Typewriter
(Right) Opening door
{Down) Key press “next”
(Right) Key press “delete”

ERANEERIN]

> - -» -
container label Iabel text @ container ...
&~

nexi’ delete reply

FIGURE 6: Navigation Based on Application Structure

This technique would be tedious if the user had to listen to the entire auditory icon each time they moved to
an object. Although the auditory icons are short, average of one second, they are interruptible within
approximately 50 ms. This set-up allows the user to quickly move throughout the interface. Also, it is
important to remember that the navigation controls are consistent throughout the interface. Expert users
seem to exhibit a form of muscle memory where they quickly press a sequence of keys to jump to parts of
the interface. Some users even orient themselves by quickly moving to an “edge” in the tree structure,

hearing the out-of-bounds sound, and then proceeding. Overall the feel of the navigation is quick and
responsive.

Navigation Shortcuts

The persistent image of the graphical interface coupled with mouse input allows sighted users to quickly
move from one portion of the interface to another. Even though Mercator users can quickly move throughout
the interface, it is beneficial to provide keyboard shortcuts for expert users. One useful shortcut is the ability
to move to the beginning, or end, of a group of objects. This jump is accomplished by hitting the 1 and 3 key,
respectively, on the numeric keypad. The user hears quick snippets of the auditory icons for the objects that
are “passed over” by using the short-cut.

Although the user could switch between applications by navigating to the “top” of an application and over to
the next application, the user can press the right or left arrow key coupled with the Shift or Alt key to switch
between applications. When the Alt key is used, the user is moved to the “top” of the next application. When

By 7 Y 4.4

T e e

I W e i

RS-

16

the Shift key is used, the user is moved to their last location in that application saved from the last time they
used that application. This control helps the user recover their working context within an application. When
the user switches between applications, they hear a paper flipping sound that should remind the user of
switching between tasks, as well as the windows that are popping to the front of the screen contents. The
new application name is announced with a message, such as, “Framemaker is the current application.”

The user can also set hot keys for the row of keys above the numeric keypad. These keys can be used to
move to a designated spot in an application interface that is specific to that application. The numeric keypad,
annotated with the navigation controls, is pictured in the following figure.

User User User User
Macro Macro Macro Macro
Num / * -
Lock
Up
7 8 9
Left Current Right
S-Prev App | S- Preview | S-NextApp
A-Prev App A-Next App
(top) (top) | +
5 6
Jump Down Jump
Back Forward Select
1 2 3
. Enter/Exit
{/
Stop Speaking Text Area
0 . Enter
Ins Del

FIGURE 7: Mercator Navigation Controls

Although the navigation short-cuts assist the user in moving quickly throughout the hierarchy, they still do
not afford the same freedom as quickly moving the mouse from one part of the screen to another. Different
interaction styles not explored in this research include using a spatial model for the interface where the user
could operate the mouse to move from one portion to another. Likewise, a tactile interface representing the
tree structure could be used to provide a persistent overview as well as a medium for large jumps in the
interface.

Auditory Preview

One limitation of auditury interfaces is the difficulty in presenting an overview of the interface contents.
When sighted users look at a graphical interface, their eyes can quickly scan the interface to get a rough
determination of its contents. Sometimes they can tell if they are where they want to be by the visual features
of the interface. This technique applies to reading text as well. Robert Steven’s [27] design of an auditory
preview of mathematical equations can be applied to previewing portions of the Mercator interface. An
auditory preview is simply short snippets of auditory icons that are played in quick succession. By the

17

overall length and diversity of sounds in the preview, the user gets a rough sense of the contents. The user
can ask for previews of any group of objects, for example, objects grouped in a container or in a pop-up
dialogue.

Sometimes the user does not need an auditory preview, but simply needs a reminder about the current object.
In a visual interface, we can look away and then look back, regaining our visual focus. A user of an auditory
interface may also need to regain the auditory focus. By pressing the 5 key, the user hears the auditory cue
(may be a combination of nonspeech and speech output) for the current object. The inclusion of this feature
is a simple example of learning from user feedback. The first Mercator interface did not include this control,
and users (including us) would navigate away from and then back to the current object to regain the auditory
context.

Manipulating the Interface and User Feedback

Up to this point, the description of the user interface has focused on the user perceiving and navigating the
contents of the auditory interface. The next step is allowing the user to manipulate the interface. In this
section, we describe how the users manipulate Mercator interfaces, as well as the feedback that the user
receives from Mercator. The auditory feedback cues used in Mercator are summarized in Table 3:
“Nonspeech Auditory Feedback in Mercator.”

Selection

A principal action that users perform with graphical interfaces is selection. The action is typically
accomplished by clicking (or double-clicking) on an object with the mouse. Since the Mercator user is
working with the keyboard and not with the mouse, mapping selection to a keystroke reduces the distance
that the users’s hand must move. In Mercator, pressing the Enter key on the numeric keypad is mapped to
selecting an object. Mercator can determine what mouse events the application expects (e.g. single or double
click) and then simulate those events for the application.

Given the limitations of manipulating sampled sounds, creating pairs of sounds for {this is a push button,
you just pushed a push button} was too difficult given the set of auditory icons used in Mercator. If the user
successfully selects an object, the user will hear a short sound akin to someone ripping a batch of papers.
This sound was chosen because it seemed to imply that something was happening, indicating 1o the user that
the selection event had taken place. Since few users could actually identify the sound as ripping papers, they
did not express any negative connotations about the sound. A longer discussion of the action-oriented
content of sounds is presented in [23][24].

Pop-up Windows

Pop-up windows are an interesting case of the content, structure and focus of the interface changing almost
instantaneously. When a pop-up window appears, the space of the interface (its content) is now augmented
with the contents of the pop-up window. Likewise the structure of the interface, and our hierarchical model,
is augmented by the structure of the pop-up. Often the input focus of the interface is moved to the pop-up as
well, for example, modal pop-ups that require users to confirm or cancel an action before proceeding.

In graphical interfaces, pop-up windows capture the user’s attention by being drawn on top of the other
windows. In Mercator, whistling sounds are used to notify the appearance or disappearance of a pop-up
window. A whistling sound with a rising pitch indicates that a pop-up has appeared, while a descending
pitch indicates that a pop-up has disappeared. If the input focus 1s shifted to the pop-up, the user is moved to
that location in the application tree structure. This move is indicated by the auditory icon for the pop-up
window, a springy sound. There is a deliberate attempt to reinforce the terminology of pop-up window with
these sounds. Both the whistling and spring sounds help form the illusion of something popping up in front
of you.

18

When the user dismisses a pop-up, they are placed in their original location, where they were before the pop-
up appeared. For example, in the Figure 3: "Annotated Graphical Interface”, when the user presses the reply
push button, they hear the following sounds as the pop-up appears on the screen:

“Rip" the selection is Successful
“Whistle-up” the pop-up appears on the screen
“Spring” the user is moved to the top of the popup structure

If the user navigated to the cancel button, selecting that button and thereby dismissing the pop-up, they
would hear:

“Rip" the selection is successful
“Whistle-down" the Ppop-up disappear from the screen
“Ca-chunk” “Reply” the user is moved back to the reply push button

Pop-up windows are stored in the interface mode] as descendants of the uppermost node of the application
tree structure since they are perceived as separate windows on the screen. When the POp-ups are not modal,
the user can navigate up out of the Pop-up and back to the main application structure. If the pop-up is modal,
such as requiring a confirm or cancel operation, the user is not allowed to navigate out of the pop-up,
retaining the semantics of the interface.

TABLE 3: Nonspeech Auditory Feedback in Mercator

Action Nonspeech Auditory Feedback

Selection Ripping papers

Switching between applications Paper shuffling

Navigation emror Ball rebounding against wall

Entering text mode Rolling / rocking sound (drawer pulled out)
Moving edit cursor in text area Click (pitch based on position in text)
Popup appearing / disappearing Whistle up/down

Application connecting to Mercator Winding

Application disconnecting Flushing

Interacting with Text Objects

Screen readers for text-based interfaces, such as the command line interface to DOS, have existed for many
years. These interfaces have formed a set of standard requirements for reading and manipulating text areas!.
One requirement is support for two “cursors,” an edit cursor that is located at the insert position in the text,
and a review cursor that can be moved independently to read portions of the text. Operations for moving and
synchronizing the cursors are coupled with operations for reading text by character, word, line, sentence and
paragraph. Different filters are used to parse and pronounce the text based on the current task requirements.
For example, a Unix filter can be used so that the command:

more dissertation.text | grep Mercator
would be read as:

more dissertation dot text pipe grep Mercator

1. Although there is not a Paper detailing requirements for text-based screen readers, we were able to determine the
needed functionality by txamining existing screen readers and talking with blind computer users.

—

19

To review a text area, the user is required to enter “text mode” by pressing the ./Del key. For example, when
the user navigates to a text area (hearing the typewriter sound), they then press the ./Del key to enter text
mode. This operation is accompanied with a rolling/rocking sound to indicate moving into a different state.
While in text mode, the keys on the numeric keypad are mapped to operations for reviewing text. The users
can return to navigating the interface by exiting text mode, again pressing the ./Del key and hearing the
rolling sound.

Some of the commands provided in Mercator for reading and manipulating text are summarized in the
following figure.

Num / - -
Lock
Read Sent Up Line} Read Para
S-Read Next S-Up Sent| S.Read Next
A-Up Para
7 8 9

Back Word Read Line |Forward Word
S-Back Char |S-Read Next S-For Char

+

4 5 6

Read Char| Down Line{ Read Word
S-Read Next | S-Down Sent| S-Read Next Select
A-Down Para
1 2 3
. Enter/Exit
Stop Speaking Text Area
0 . Enter

Ins Del

FIGURE 8: Mercator Text Controls

User Levels
Based on experience with demonstrating and evaluating Mercator, it became clear that the interface could be
modified to support the transition from a novice to expert user. The tcl interface code was easily extended to
support three user levels (Novice, Intermediate, Advanced). The primary modifications focused on
information presented to the user when they navigated to an object, and when they requested information
about an object. Based on observations of people using Mercator, three stages of learning becarmne apparent.
* Recognizing auditory icons
The users learned the sounds for push buttons, text areas and so on.
* Parameterized auditory icons
The users learned how the auditory icons are manipulated to convey attributes of objects such as a
push button being greyed out.
* Understanding modes

Users learned that they have to enter “text mode” to review the contents of a text area.

gl ol % 4 o

I —

20

The current user level determined the amount of redundant speech information. What the user would hear,
per user level, after navigating to a greyed out push button labeled undelete, is shown in the following table.

TABLE 4: Interface Output for Push Buttons Per User Level

Novice Push button (muffled ca-chunk sound) undelete greyed out
Intermediate (muffled ca-chunk sound) undelete g}e_ved out
Advanced (muffled ca-chunk sound) undelete

When the user asks for information about an object by pressing the 5 key, they hear the information
corresponding to one level less experienced than their current setting. This strategy helps users transition
between levels. For example, a user can switch to operating as an Intermediate, but still get additional
information for objects that they have forgotten or have not encountered.

1 ASSESSING MERCATOR'S INTERFACE

During the course of this research we have utilized many methods for assessing Mercator’s design including
discussing our design with users and other designers, observing people using Mercator as well as observing
how people teach others to use Mercator, and measuring the performance of people conducting specific
tasks. To collect quantitative data on the learnability of Mercator, we measured how quickly sighted users
reached peak performance in a specific task of reading and replying to email messages using a graphical
email application. One motivation for using sighted people in this experiment is that we also examined the
effects of transitioning between using the graphical and auditory versions of the same application.

YN

We have also compiled reactions by blind users that we have received over the past three years. We did not
perform controlled experiments with blind users for two reasons. First, previous experience with computers
appears to be an overriding factor in how well blind users perform with screen readers for graphical
interfaces. It would have been difficult to control previous experience so that performance data would be
meaningful across subjects. Second, the available sample of blind users in the Atlanta area generally had no
computer experience. In contrast, users attending conferences for assistive technology, generally had
comparable experience with computers and were motivated to use graphical interfaces. We discussed
Mercator’s design with potential users at over ten conferences that included an emphasis on assistive
technologies. At three of the these conferences, Mercator was available for use over muitiple days among the
product exhibits. From these experiences, we have summarized favorable and critical assessments of
Mercator interfaces.

Measuring Performance with Mercator

Having already observed that blind users could learn to use Mercator, we wanted to assess how well sighted
users performed with Mercator for two reasons. First, we needed a controlled setting in which we could
measure the time needed to learn to use Mercator. Based on demonstrations with blind and sighted users, it
appeared that computer literate sighted users took longer to learn the interface than computer literate blind
users, but that the stages of learning were the same.

Second, we wanted users to contrast their use of a graphical interface and the Mercator-derived auditory
interface. One hypothesis was that experience with the graphical interface would be beneficial in using the
auditory interface since the two interfaces share the same structure.

In order to assess users’ performance with the auditory interface, as well as determine the effects of prior
experience with the graphical interface, test subjects worked with graphical and auditory versions of the
application xmailtool. A screen shot of the graphical interface is shown in Figure 3: "Annotated Graphical
Interface”.

Quantitative data was calculated from analyzing activity logs. The logs indicated each time an event had
occurred in the interface, such as moving to a new object, entering or exiting text mode, or selecting an

21

object. With the subjects’ consent, we videotaped the sessions including training and debriefing in addition
to the test tnals.

Seventeen subjects worked with combinations of the graphical and auditory interfaces. The subjects were
randomly divided into four groups as shown in the following table. The group designation determined which
interfaces they used, and in what order. For example, in Group 2, the subjects started with the graphical
interface, but switched to the auditory interface after four trials. The subjects in Group 3 only used the
auditory interface.

TABLE 8-1 Experimental Design

Part A (4 trials) Part B (4 trials)
Group 1 (3 subjects) Graphical Graphical
Group 2 (6 subjects) Graphical Auditory
Group 3 (5 subjects) Auditory Auditory
Group 4 (3 subjects) Auditory Graphical

In each trial, the subject selected, read and replied to three specified email messages.
The training for the experiment was conducted in three stages.

¢ Description of the Task

I told the subjects the details of the task they were to perform, namely that they were to locate, read
and reply to three specified email messages. I explained that in each message was a test phrase that
they would need to type into their reply.

* Description of the Interface

At this point, I either described the graphical interface or the auditory interface. I explained how to
navigate the interface and how to select objects.

I also showed the’subjects a diagram of the common structure of the graphical and auditory interfaces
similar to the diagram in Figure 5: "Partial Tree Structure Representation of Graphical Interface”.

¢ Demonstration of the Task
I demonstrated replying to one email message. I went through all of the steps including writing and
sending the reply.

Learning the Auditory Interface

The most promising result of the experiment is that all of the subjects were able to learn how to use the
auditory interface. The average time to complete a trial sharply decreased after one trial with peak

!

T

22

performance achieved around the fourth trial. Another important result is that the variance in time taken
sharply decreased after one trial (average of 401.33 to average of 88.96).

800
Time (s)

600

400

200 T

4 I]

0 T }
1 2 Tral 3 4

FIGURE 9: Learning to use Mercator

Stages of Learning

So what did the subjects learn? From observation and inspection of the data, it appears that four concepts
were acquired in the approximate order: :

1. Basic Auditory Icons

Since the subjects had only heard a brief demonstration, they needed to spend some time recognizing and
learning the auditory icons. Although ten sounds were needed in this interface, the subjects never asked what
a sound meant. They seemed to use the 5-Info key to hear the auditory icon coupled with redundant speech
information until they learned the meaning of the auditory icon.

2. Navigation

The biggest hurdle in using the interface is understanding the hierarchical navigation scheme. Subjects who
had never seen the graphical interface had to Jearn that the down and up keys took them in and out of groups
of objects. Improved navigation times greatly contribute to overall improved performance times. In part,
improved navigation times seemed to be impacted by how safe the users felt. As users realized that they
could navigate the interface without causing unwelcome consequences, they increased their rate of input,
“bouncing off the walls” when they went too far in any direction.

3. Parameterized Auditory Icons

As the subjects continued using the interface, it became apparent that they were learning to listen for the
pitch differences between auditory icons of the same class. For example, the reply push button is in the
container with 18 children. This container has a deeper sound than other containers in the interface.
Likewise the text areas with the headers and message are much larger than the text area with diagnostic
output. Subjects learned to listen for the container and text areas with a lower pitch helping them locate these
objects faster and more reliably.

4. Text Mode

A common guideline in human-computer interaction is to avoid modes in the interface. Mercator has one
mode and it proved problematic. When users navigate to a text area, they need to enter text-mode so that the
numeric keypad can then be used to navigate the text as opposed to navigating the rest of the interface. Often
a subject would reach a text area, but not remember to switch into text mode. Common guesses were
selecting the text area and trying to navigate down into the text area (not a bad idea!).

-

P31 7 Y Y YW

23

Transitioning between the Graphical and Auditory Interfaces

One way to demonstrate that the auditory interface captures critical characteristics of the graphical interface
is 10 look for a transfer effect when the user transitions from using the interface in one modality to using the
interface in the other modality. For example, if the user has experience with the graphical interface, this
experience should help the user learn the auditory interface. Unfortunately quantitative measurements did
not demonstrate that such an effect took place. There are two reasons related to the experimental design that
may help explain why the transfer effect was not evidenced:

* Exposure to Interface Structure

During the training, I showed all of the subjects a diagram of the interface structure. Users of the
graphical interface paid little attention to the diagram. In contrast, users of the auditory interface
studied the diagram and indicated that they would have preferred to consult the diagram during the
task. The information in that diagram is in essence the information that should cause a transfer effect.
Experience with the graphical interface should give the user information about the structure of the
interface. By showing the diagram to the users of the auditory interface, I accidently gave those users
the same information that the transfer effect s based on. Therefore the effect was hidden by the
improved performance of the users of the auditory interface.

* Graphical Task Too Easy

Performing the task with the graphical interface required little cognitive effort. The performance
times increase over the trials is likely due to boredom. The subjects spent most of their time trying to
determine what I was actually testing them on. One subject asked me if I was manipulating the lights
in the room. Since they did not have to think about the task, they internalized little information about
the content of the graphical interface.

During the debriefing, subjects who first used the graphical interface and then used the auditory interface
made three interesting observations:

* Exposure to Graphical Interface Helped in Using Auditory Interface

Although not evident in the quantitative analysis, the subjects reported that their experience with the
graphical interface was helpful in understanding the auditory interface. Aspects of the graphical
interface that were helpful included knowing the objects in the interface, the spatial ordering of the
objects, and the relative sizes of objects.

* Subjects Needec,l to Update their Simple Model of the Interface

Although subjects reported that their exposure to the graphical interface was helpful, they remarked
that they needed to form a more complex model of the interface when working with the auditory
interface. They did not describe forming a new model, but augmenting their simple mode! with more
information. For example, in the graphical interface, the subjects could easily ignore a number of
objects in the interface. Since they had to navigate past these objects in the auditory interface, they
needed to augment the interface model with these objects.

* Initial Transition Between Spatial and Hierarchical Was Difficult

Since the subjects had a fresh visual image of the graphical interface in their minds when they began
working with the auditory interface, they typically tried to navigate the interfacs based on the spatial
layout. Most of the interface objects are arranged top to bottom in the gragiical interface, but since
they are sibling objects, they are accessed by moving left and right in the auditory interface.
Navigation errors from trying to move in spatial directions generally disappeared during the first trial.

FOETLIUPVS I A WP~ 8 s svrs n e

24

Observations by Blind Users

Reactions to Nonspeech Auditory Cues

Blind users have expressed an overwhelming positive response to the use of everyday sounds in screen
reader interfaces. As noted previously, users of current screen readers have difficulty separating interface
information, such as “Push Button'” from application information, such as “Edit,” when both types of
information are presented with speech or braille. When blind users were able to work with and listen to the
Mercator interface, they remained impressed with the use of everyday sounds. In addition to particularly
liking the typewriter and whistle sounds, in contrast to sighted users, blind users liked the container sound
and were rarely confused about its use. Users commented that the filtering of the auditory icons was subtle,
noting that many designers unnecessarily exaggerate changes in audio.

Reactions to Hierarchical Interface Structure

In contrast to the use of everyday sounds, blind users were skeptical about hierarchical navigation schemes
as presented during design briefings. The general consensus was that they needed to “know what was on the
screen” since that was what their sighted counterparts used. Only after using Mercator, did users express
their preference for this scheme.

Users have requested that Mercator allow them to print out information about the structure (object hierarchy)
of an interface using a braille printer. Users experimenting with this strategy refer to consulting the constant
tactile image while exploring the auditory interface. The tactile image seems to provide some of the
functionality that the constant visual image provides to sighted user.

A new screen reader also uses an underlying hierarchical model. The system, called Virgo, transforms
Microsoft Windows interfaces into braille interfaces. Instead of using auditory icons, the first two braille
cells contain a code that represents the type of objects, and the remaining braille cells contain the label and
highlighting information.

Meeting Goals for Screen Reader Design

After discussing the benefits that graphical interfaces provide for sighted users, we outlined six goals for
transforming graphical interfaces into auditory interfaces. Given the auditory interface design discussed in
this paper, how well does Mercator meet those goals?

* Access to functionality

By providing general strategies for representing graphical interfaces with auditory interaction
techniques, Mercator provides transparent access to applications for word processing, electronic mail,
calendars and so on. In these text-based interfaces, spatial information in the interface is generally
mapped to structural information. One exception is when domain specific information such as the text
in a document is searched spatially using the controls for manipulating and reading text.

One advantage of Mercator is that all objects in the interface are treated as first class objects. In
contrast to current screen readers, users do not have to define special view areas to access portions of
the interface that do not accept user input such as message bars.

* lconic representations of interface objects

When possible, interface objects are grouped into the same discrete objects that sighted users
perceive. The identify and attributes of these objects are conveyed with auditory icons. Like their
graphical counterparts, auditory icons leverage knowledge of the real world in presenting interface
output.
¢ Structural organization

A central motivation in Mercator’s design is to convey the underlying structure in graphical
interfaces. The groupings of objects, conveyed with visual cues in the graphical interface, are made
evident as the user navigates into, within, and out of object groups. These groups help clarify the
functionality of individual objects.

RPN SO L e .

25

» Direct manipulation

As in graphical interfaces, users directly interact with objects in the interface and interface output is
conveyed via the objects. In as much as the graphical interface provides objects that match how user's
conceptualize tasks with the application, Mercator provides a direct manipulation interface.

* Spatial arrangement

A primary difference between Mercator and commercial screen readers is that Mercator is based on a
hierarchical model of the graphical interface as opposed to a spatial model. Mercator, however, does
provide information about the spatial attributes and layout of the graphical interface. The relative
sizes of objects are conveyed by manipulating their base auditory icons. Information about the layout
of text is conveyed by modifying the sound of the edit cursor as it is moved throughout the text. The
layout of objects helps determine their ordering in the auditory interface.

Nevertheless, information about the layout of the interface is lost in this representation. Likewise,
users are not able to arrange application windows along spatial dimensions. This design trade-off was
made to offset existing usability problems with commercial screen readers.

» Persistent presentation

A benefit of visual interfaces is that they exist in physical space and can be reviewed over time
creating a surrogate short-term memory for recalling the contents of the user interfaces. This type of
persistent presentation is difficult to achieve in a complex auditory interface where multiple
continuous sounds are confusing and distracting. To improve the user’s scanning capabilities, we
provide the preview facility. The short snippets of the auditory cues help convey portions of the
interface, and is sufficiently succinct to confirm the user’s location in the interface.

Some blind users have experimented with using braille printouts of the interface structure. The users
refer to this constant tactile image while exploring the auditory interface.

FUTURE WORK

This design is effective for blind users working with text-oriented applications such as word processors,
electronic mail and other menu and form-based interfaces. The challenge of providing access to more
graphical applications such as drawing programs remains. One area of future research is incorporating the
use of a tactile display. The auditory and tactile displays could be used to create complementary presentation
of the graphical interfaces. The tactile display would help offset some of the limitations of the auditory
interface by providipg a constant presentation of the interface as well as supporting large moves across the
space of the interface.

In many ways, this research addressed an important, but overly constraining problem of transparent access to
graphical applications. Once the constraint of transparency is relaxed, one could imagine combining aspects
of spatial and conversational interfaces into the default hierarchical interface to leverage domain-dependent
interaction. The potential of adding voice interaction is especially compelling. We have extended the
Mercator architecture to include voice as a potential input source, but we have not furthered explored its use.
The inclusion of a spatial model could aid in providing access to a broader range of applications that
inherently include spatial content such as drawing and map-based tasks.

Sighted computer users could also benefit from auditory representations of graphical interfaces while
performing eyes-busy tasks such as driving, performing maintenance on a airplane, or inspecting a
manufacturing plant. The needs of these users will be different however. For instance, supporting mobility
will likely be a key requirements. In these cases, improving the flexibility of conversational interfaces may
provide the most promise.

26

ACKNOWLEDGEMENTS

The Mercator projéct represents a multi-year, multi-person effort. Thanks go to Keith Edwards, Tom
Rodriguez, Kathryn Stockton, Ian Smith, Sue Liebeskind, Sue Long, Kevin Chen, Will Luo and Stacy Ann
Johnson for their design and implementation contributions.

This research was supported by Sun Microsystems, the NASA Marshall Space Flight Center, the National
Security Agency, and Georgia Tech.

—

27

REFERENCES

(1] outSPOKEN, The Talking Macintosh Interface. User Manual. Berkeley Systems. 1989.

{2] Blattner, M., Glinert, E. P, and Papp, A. L., 1. Sonic Enhancements for 2-D Graphic Displays,
Auditory Display: Sonification, Audification and Auditory Interfaces, edited by G. Kramer, SFI
Studies in the Sciences of Complexity Proc. Vol. XVIII, Addison-Wesley, 1994, pp. 447-470.

[3] Blattner, M. M. and Greenberg, R. M. Communicating and Learning Through Non-Speech Audio.
In Multimedia Interface Design in Education, edited by A. Edwards and S. Holland, Springer-
Verlag, NATO ASI Series F, 1992, pp 133-143,

(4] Blattner, M. M., Sumikawa, D. A, and Greenberg, R. M. Earcons and Icons: Their Structure and
Common Design Principles. Human-Computer Interaction 4(1), 1991, pp. 11-44.

[5) Boyd, L.H., Boyd, W.L. and Vanderheiden, G.C. The graphical user interface: Crisis, danger and
opportunity. In Journal of Visual Impairment and Blindness, December 1990, pp. 496-502

[6] Burgess, D. The NA3 Audio Server. Final report to Sun Microsystems. 1993,
[7] Day, G. Personal communication, 1995,

[8] Edwards, A.D.N. Graphical User Interfaces and Blind People, Proceedings 3rd International
Conference on Computers for Handicapped Persons, Vienna, July 1992, pp 114-119.

[9] Edwards, A. D. N. Evaluation of Outspoken software for blind users, University of York,
Department of Computer Science Technical Report YCS150, 1991.

[10] Edwards, A. D. N. Modeling blind users’ interactions with an auditory computer interface.
International Journal of Man-Machine Studies, 1989, pp. 575-589.

[11] Edwards, W. K. and Rodriguez, T. Runtime Translation of X Interfaces to Support Visually-
Impaired Users. In Proceedings of the 7th Annual X Technical Conference, Boston, MA, 1993.

[12] Edwards, W.K. and Mynatt, E.D. An Architecture for Transforming Graphical Interfaces. In the
Proceedings of UIST'94: User Interface Software and Technology Symposium, Marina Del Ray,
CA., Nov. 2-4, 1994, 39-47.

(13] Edwards, W.K., Liebeskind, S. H., Mynatt, E.D and Walker, W.D. A Remote Access Protocol for
the X Window System. In the Proceedings of the 9th Annual X Technical Conference, Boston, MA,
1995.

[14] Gaver, W. W, Everyday listening and auditory icons. Doctoral Dissertation, University of
California, San Diego. 1988.

[15] Gaver, W.W. Using and Creating Auditory Icons. In Auditory Display: Sonification, Audification
and Auditory Interfaces. edited by G. Kramer, SFI Studies in the Sciences of Complexity Proc. Vol.
XVIII, Addison-Wesley, 1994, pp. 417-446.

[16] Glinert, E.P. and York, B.W. Computers and People with Disabilities, in Communication of the
ACM, 35(5) 1992, pp. 32-35.

(17] HumanWare, Artic Technologies, ADHOC, and The Reader Project. Making good decisions on
technology: Access solutions for blindness and low vision. In Closing the Gap Conference, October
1990. Industry Experts Panel Discussion.

?__;—7

; 28

{18] Hutchins, E.L., Hollan,].D. and Norman, D. A., Direct Manipulation Interfaces. In User Centered
System Design, edited by Norman, D.A. and Draper, S.W., Lawrence Erlbaum Associates, Inc.,
1986, pp. 87-124.

(19] Ludwig, L. L., Pincever, N. and Cohen, M. Extending the notion of a window system to audio.
Computer, August 1990, pp 66-72.

[20] Ludwig, L. L. and Cohen, M. Multidimensional audio window management. International Journal
of Man-Machine Studies, 34(3), 1991, pp 319-336.

[21] Ly, E. Chatter: A Conversational Telephone Agent. MIT Master's Thesis, Program in Media Ants
and Sciences, 1993.

(22] Mynatt, E. and Weber, G. Nonvisual Presentation of Graphical User Interfaces: Contrasting Two

Approaches,” in the Proceedings of the ACM Conference on Human Factors in Computing Systems,
1994.

(23] Mynatt, E. Designing Auditory Icons, In Proceedings of the Second International Conference of
Auditory Display, ICAD '94, Sante Fe, New Mexico, 1995, pp. 109-120.

{24] Mynatt, E. Transforming Graphical Interfaces into Auditory Interfaces. Doctoral Dissertation,
Georgia Institute of Technology, Atlanta. 1995,

[25] Norman, D. A. The Psychology of Everyday Things. New York: Basic Books. 1988.

[26] Schmandt, C. Phoneshell: the Telephone in Computer Terminal. Proceedings of ACM Multimedia
Conference, August 1993.

[27] Stevens, R., Brewster, S., Wright, P. C., and Edwards, A. D. N, Design and Evaluation of an
Auditory Glance at Algebra for Blind Readers. In Proceedings of the Second International
Conference of Auditory Display, ICAD ‘94, Sante Fe, New Mexico, 1995, pp. 21-30.

e e el NS IA. TECI ¢ IRRARY

[28] Stifelman, L. J., Arons, B., Schmandt, C. and Hulteen, E. A. VoiceNotes: A Speech Interface for a
Hand-Held Voice Notetaker. In Proceedings of INTERCHI 93, ACM SIGCHI, 1993, pp 179-186.

[29] Yankelovich, N. SpeechActs & The Design of Speech Interfaces, in the Adjunct Proceedings of the
1994 ACM Conference on Human Factors and Computing Systems, Boston, MA, 1994.

(30] Yankelovich, N., Levow, G., and Marx, M. Designing Speech Acts: Issues in Speech Interfaces,
Proceedings of CHI ‘95, Denver CO, May 8-11, 1995.

o mdke -

B T RNV

ULTRASONIX USER MANUAL

1.0 INTRODUCTION
1.1 About UltraSonix

Welcome to UltraSonix, a screen-reader, for X Windows applications. UltraSonix is a software
system that allows you to use many X Windows applications even if you cannot see the screen.
UltraSonix provides speech, auditory sound effects and braille output to represent the visual,
graphical interface. UltraSonix also provides keyboard alternatives to the mouse pointing device,

1.2 Learning X Windows Applications

For many users, using UltraSonix may be their first experience with accessing graphical
applications. Part of the learning process will be learning about how typical X Windows
applications work. Graphical interfaces are unlike command-line interfaces such as DOS. This
manual introduces concepts underlying graphical X Windows applications. Nevertheless, the best
way to learn is through experimentation.

1.3 About this Manual
This manual is organized into 7 sections:

1.0 INTRODUCTION
What you are reading now.
2.0 INSTALLATION
Instructions for installing UltraSonix
3.0 INTRODUCING X WINDOWS
A short review of the concepts underlying X Windows applications and GUI interfaces.
4.0 GETTING STARTED
This contains an introduction into using UltraSonix and should require sufficient instructions for
many beginning users.
5.0 BRAILLE OUTPUT
Instructions for adding braille output to UltraSonix
6.0 CONFIGURATION
Information for configuring UltraSonix
7.0 REFERENCE
A summary of the commands used by UltraSonix as well as the sound effects.

2.0 INSTALLATION

This section describes how to install UltraSonix on your platform, and what the requirements of
the target system are.

2.1 Platform Requirements

The UltraSonix screenreader software is designed to be run on Sun SPARCstation or
SPARCstation-compatible computers running the Solaris 2.4 (or later) operating environment.

Hardware and operating system requirements are:

* Atleast 32MB of memory recommended for best performance.

SPARC:station 2 or better recommended for best performance (a faster machine may be

necessary if you plan on using software-based speech synthesis).

10MB free disk space.

Solaris 2.4 or later.

Either 8-bit or 16-bit audio hardware (standard on most Sun computers).

A supported speech synthesis system (currently DECtalk DTCO1, DECtalk Express, and

Entropic TrueTalk are supported).

» Either version RS or R6 of the X Window System. The OpenWindows 3.4 (or later) window
system from Sun is recommended, and comes as the default on Solaris 2.4. If you do not run
OpenWindows 3.4, your server must support the XTEST extension. We highly recommend
using the OpenWindows server, however.

Optional supported hardware includes:

* A supported Braille terminal system (currently the Alva 3-20 or Alva 3-80).
* Anexternal keyboard device (currently the Genovations device is the only supported external
keypad).

To operate with the UltraSonix software, applications must have the following properties:

Be written to the Xt Intrinsics toolkit, version RS.

Be based on the Motif or Athena widget sets.

Be dynamically linked against the X libraries.

Not have the setuid bit set (Solaris security does not support the use of shared libraries from
non-standard locations by setuid applications).

In order to compile the UltraSonix softare, you need the following:

* An ANSI-compliant C compiler (we recommend SPARCcompiler C version 3.0 or later).

* A C++ compiler with support for templates and exceptions (we recommend SPARCcompiler
C++ version 3.0 or later).

* The Rogue Wave Tools.h++ library for C++ (this library comes with SPARCcompiler C++

version 3.0 and later). _
* ANSI/POSIX-compliant header files and system call interfaces.

2.2 Installing the Software

The UltraSonix software is distributed in the "package" format. Packages are a standard
mechanism for software distribution used in Unix SVR4. They provide features such as automatic
versioning, dependency analysis, and consistent installation procedures.

Solaris provides two separate tools for installing software packages. The first is a graphical tool
called swmtool. The second is the command-line pkgadd. Both are in /usr/sbin. Instructions for
using each are provided below.

Before you begin installation, you must decide on a location for the software. We recommend
installing in /opt (the standard location for "optional” software in SVR4). You can install
UltraSonix anywhere however.

CFEORCUA TEAU 1P sy

Note that the procedures below assume that you are running Solaris Volume Management (the
Volume Manager controls the automatic mounting of floppies).

2.2.1 Installation Using SWMTOOL

(NOTE: Installation via swmtool is not currently supported.)

2.2.2 Installation Using PKGADD from a Tar File
Uncompress the file GTsonicx.tar.Z via the command
uncompress GTsonicx.tar.Z
and then untar it with the command
tar xvf GTsonicx.tar

This can be done in any directory which has more than approx. 8 meg. of storage. After this is
done there should be a directory called GTsonicx.

Next, you must use the pkgadd command to install the UltraSonix software onto your system.
pkgadd is located in the /usr/sbin directory and must be run as root (so that it can update various
system databases which record information about what packages are installed on the system).

By default the package will be installed under the /opt directory. If you wish to use a different
location, you must specify the location on the command line. To install in /opt, type the following
command:

pkgadd -d <GTsonicx package location> GTsonicx
While we recommend installing the package in the default location, it is possible to install it in a
different directory. The following command will cause pkgadd to prompt you for the location to
install the package.

pkgadd -a none -d <GTsonicx package location> GTsonicx

The package will be copied to the directory specified by the -R option.

2.2.3 Installation Using PKGADD from Floppies

Insert the floppy labeled UltraSonix 1/5 into the floppy diskette drive. The exact command
sequence you will follow depends on whether or not you're running the Solaris volume manager.
(The volume manager is the software system on Solaris which handles mounting and unmounting
of removable media. By default, the volume manager is always running.)

This document describes installation on systems running the volume manager.

To tell the volume manager to detect the presence of a floppy disk in the drive, type the following
command:

volcheck

GEORGIA TECH 1IRRARY

T

The installation procedure is similar to the one described above but the location of the package is
now different:

pkgadd -d /vol/dev/aliases/floppy0 GTsonicx
While we recommend installing the package in the default location, it is possible to install it in a

different directory. The following command will cause pkgadd to prompt you for the location to
install the package.

i s h

pkgadd -a none -d /vol/dév/aliases/ﬂoppyO GTsonicx

The package will be copied to the directory specified by the -R option.

As pkgadd runs it will prompt you to install the other four floppies as needed.

2.3 Directory Layout

In the following section, we assume that the package has been installed in /opt, the default location.
If you have installed the package in a non-default location, simply prepend the directory you
specified to pkgadd to "/opt” in the information that follows.

Once the package has been installed in /opt/GTsonicx, several subdirectories will be created. The
layout of the directory structure is as follows:

/opt/GTsonicx/

bin/
alvad
console
dectalkd
mercator-configuration
mercator
netaudiod
runsonicy,

lib/

R5/
libX11.s0
libXt.so

R6/

libICE.50.6.0
1ibX11.50.6.0
libXext.s0.6.0
1ibXt.50.6.0
1ibSM.s0.6.0
libXaw.s0.6.0
libXmu.s0.6.0

&
§
L
§

Ca

Ré.orig/

RAP/

1ibX11.50.6.0
libXt.s0.6.0

libRAPagnt.so
libRAPcInt.so

loadables/

scripts/

Alva.so
DectalkX.so
NetAudio.so
Dectalk.so
Genovations.so
Truetalk.so

<all tcl files>

sounds/

<all sound files>

templates/

etc/

apps/

doc/

Athena/
Mouf/
Apps/
<all templates, in subdirs>

mercator.attrib
mercator.config
default.flt

xmailtool-r5
xnfailtool-r6
chitrivia
pizza-tool

ProcessMgmt
briefing
dectalk.txt
truetalk.txt
ScreenReader.txt
config_files
dectalkX.txt
user-manual
UsingFDlInterest
console.txt
genovations.keypad
WritingLoadables
copyright
install.doc

r

src/
console/
console.cc
mercator-configuration/
(all sources for mercator-config.)

Other included files which do not show up in the GTsonicx directory are:

- pkginfo

- prototype
- postinstall
- preremove
- copyright

In order to use UltraSonix, you must configure the system to tell it what hardware devices are
attached to your workstation, and where various required system files are located. See Section
6.0, "Configuration," for more details on configuring the software.

After you have configured the system, UltraSonix should be ready to run.

3.0 INTRODUCING X WINDOWS
[Need general description of X Windows and concepts in GUI interfaces]
Need to define:

Window

Mouse

Focus

1A TEC 1IRPARY

»
-

CSRCIRC

4.0 GETTING STARTED

The best way to learn how to use UltraSonix is to start experimenting with a few applications.

This chapters leads you through a simple tutorial for learning the basic operations of UltraSonix. It
does not present every feature but tries to convey the feel of using this screen reader. Pointers to
additional information are included as well.

4.1 UltraSonix Keypad

The majority of commands to UltraSonix are issued through the numeric keypad located at the far
right of your keyboard. Here is the layout of the standard numeric keypad:

Num Lock / * -

7/Home 8/Up 9/PgUp +
4/Left 5 6/Right

1/End 2/Down 3/PgDown Enter
O/Insert /Delete

The + and Enter key are twice as long as the standard keys, while the O/Insert key is twice as wide.

UltraSonix uses two major modes of operation. The first mode is navigation. In this mode, you
can navigate to different objects in the graphical interface such as push buttons, windows and other
applications. The second mode is for reading and editing text. In this mode, you can search
through sections of text as well as enter textual input from the keyboard. In navigation mode, the
keypad controls are as follows:

Unassigned Unassigned Unassigned Unassigned

Unassigned Up Unassigned Drag/Release
Left Read Current Right

First Down Last Select

Stop Audio Text Mode

These controls are explained further in the section titled Navigation.

In text mode, the keypad controls are as follows:

Unassigned Cursor Modes Filter Modes Disable
Read Sentence Up Line Read Paragraph Enable
Left Character Read Line Right Character

Read Character Down Line

Read Word Select

Stop Audio Text Mode

The text mode key is used to switch UltraSonix in and out of text mode. The text reading
functions are explained further in the section titled Accessing Text.

Additional keyboard input is used, such as using modifier keys (shift, meta, alt and control) with
the numeric keypad. These keyboard combinations will be explained in the appropriate section.

4.2 UltraSonix Console

When you start UltraSonix, a UltraSonix console is started for you. UltraSonix immediately
places your focus in this application. The console allows you to control various parameters and
settings in the UltraSonix software. Via the console, you can change speech rate, voice, user
expertise level, and several other settings. There is also a text area where you can type commands
directly to the UltraSonix process (this is primarily useful for debugging and testing of the
software).

4.3 Running Applications with UltraSonix

To operate with the UltraSonix software, applications must be run in a special way. UltraSonix
works by substituting its own special versions of the X Window System libraries in applications as
they run. Applications that aren't run using these special libraries will not be "visible" to the
UltraSonix software.

To run an application under UltraSonix, use the command "sxrun.” Sxrun is a shell script that sets
several environment variables and then executes the rest of the arguments on its command line as a
command. For example, to run the "xmailtool" application, you would type the following
command:

sxrun /opt/GTsonicx/bin/xmailtool

Type this now to start the xmailtool application; we will use this application as a demonstration in
this tutorial.

1A T 10D ARY

»
-

k0 IRC

s

4.4 Starting, Stopping and Switching Between Applications

As you start, stop and switch between applications, UltraSonix maintains a list of all your
applications including the UltraSonix console as your first application. Your focus is always on
one of these applications. When you start an application that UltraSonix knows how to provide
access to, you will hear a winding sound (like someone winding a music box), then you will hear a
music sound as you are moved to the new application. When you exit an application, you will hear
a flushing sound, and then a music sound as you are moved to the previous application in the
application list. '

You can press alt-right and alt-left to switch between applications by pressing the alt key, holding
that key down, while pressing the left or right arrow keys on the numeric keypad. When you
switch applications, you will hear a paper shuffling sound, and then the music sound. Each time
you hear the music sound, the speech synthesizer will announce the title of the application that is
the new focus.

Summary of controls presented in this section:

Alt-right: Move to the next application
Alt-left: Move to the previous application

Summary of sounds presented in this section:

Winding: Application starting

Flushing: Application ending

Paper shuffle: Switching between applications
Music: Focus moved to an application

4.5 Navigation

At this point, you should have started UltraSonix and then started the application xmailtool from
the UltraSonix console. After xmailtool has finished hooking up to UltraSonix, you will hear the
music sound as your focus is moved to this application. This section will lead you through the
basic steps of navigating’an application interface by describing how to navigate the application
xmailtool.

The basic premise behind UltraSonix's navigation controls is that UltraSonix maps the GUI
interface into a tree structure. To explore the interface, you can walk up and down the interface's
tree structure using a simple set of commands. The first command to learn is:

5 Info about current location
By pressing the 5 key on the numeric keypad, you can hear information about your current location
in the application interface. By pressing 5 now, you should hear the music sound and "xmailtool."
(Quotes indicate synthesized speech.) The music sound indicates that you are at the top of an
application tree structure.
The next commands to learn are:

8/Up arrow: Go up one level to the parent of the current object
2/Down arrow: Go down one level to the first child of the current object

1A IL7°0 110D ARV

T sh=r YWr

Press 2 to go down one level. You should hear the sound of tapping on glass for a window (tink
tink). If you press 5, you hear tink tink "Window"

Press 2 to go down one level. You should hear a container sound (opening door). Press 5 to hear
opening door and "Container."

The next commands to learn are:

6/Right arrow: Go to the next sibling in a group of objects
4/Left arrow: Go to the previous sibling in a group of objects

Press 2 to go into the container. You should hear a pull-chain sound for a toggle button and "Read
Message" as the label for the first toggle button. Practice using 4 and 6 to move between the toggle

buttons. You should hear a "rebound" sound if you try to go past the four buttons in either
direction.

Press 8 to go back up to the container and then press 6 to go to the next object which is a message
bar. You should hear a printer sound and the the text of the message is read.

Press 6 to go to the next object, a text area. It should sound like a typewriter.

Press 6 to go to the next object. It's a container. You can go into it to get to the push buttons. The
third push button "Undelete" should sound different since it is greyed out. (Greyed out means that
this button is currently unavailable in the interface.) Since this a large group of push buttons, you

can practice using two short-cuts to quickly move to the beginning or end of a list of objects. The
controls are:

3/PgDn: Move to the last object in a group
1/End: Move to the first object in a group

We'll take a break in the tutorial for a few minutes as we describe all the sounds that you have been

hearing. We'll pick the tutorial back up at this spot in the application interface when we finish the
discussion on Sounds in UltraSonix.

Summary of controls presented in this section:

8/Up arrow: Go up one level to the parent of the current
object

2/Down arrow: Go down one level to the first child of the
current object

6/Right arrow: Go to the next sibling in a group of objects

4/Left arrow: Go to the previous sibling in a group of

objects
3/PgDn: Move to the last object in a group
1/End: Move to the first object in a group

Summary of sounds presented in this section:

Tapping on glass: Window
Opening door: Container
Pull-chain: Toggle button
Rebounding ball: Out of bounds

e e v oerere o smae
e T II AT ONWY

A P™C IR w8 § e

_

Message bar: Printer
Text area: Typewriter
Keyboard tap: Push button

4.6 Sounds in UltraSonix

UltraSonix uses combinations of synthesized speech and nonspeech audio sound effects to convey
the state of a graphical application. The sounds effects are called auditory icons, like their
graphical counterpart. The purpose of auditory icons is to convey the types of objects used in the
graphical interface. You've already heard a number of sounds by now such as tapping on glass for
a window and a typewriter for a text area. Other examples include:

Short pop: Radio button
Short click: Check box
Flipping shutter: Menu Y
Single flip: Menu button f:
A listing of all the sounds is provided in the reference section. Ei
In UltraSonix, the sounds are also modified to convey attributes of the interface objects. For 1
example, the push button "undelete" in the last example sounded muffled to convey that it was "
greyed out in the application interface. Conversely, a sound is exaggerated to indicate if an object 4
is already selected or highlighted. ;
Auditory icons are also modified to convey the size of a object. In these cases, the pitch of a sound '.I
is modified. For example, the pitch of the typewriter sound indicates the relative size of a text area. ;;
A small text area (say 3 lines of text) would sound higher in pitch than a large text area (say 20 ‘o
* lines of text). This technique is also used with containers. A large container (contains 20 objects) 3
| would sound deeper in pitch than a small container (contains only three items.)

To hear examples of this technique, navigate back up to the container of push buttons by pressing
the 8/Up key. You should hear a deep opening sound. By navigating to the next object (6/right
key) you will move to a much smaller container. Likewise the next object is also a small container.
Continuing through the objects (keep hitting the 6/right key), the next object is a small text area.
The last object in this greup is a large text area. Practice moving back and forth between these
objects ending at the large text area that you started at. (This is the container with the push buttons
"next", "delete", "undelete” and so on).

Summary of sounds presented in this section:

Short pop: Radio button

Short click: Check box

Flipping shutter: Menu

Single flip: Menu button

Muffled: Greyced out object

Excited: Selected or highlighted object
Deep pitch: Large object (i.e. container or text)
High pitch: Small object (i.e. container or text)

4.7 Advanced Navigation and Control

o

You should now be located at the large container that contains 2 number of push buttons. In this
section, you are going to learn about pop-up windows, a new way to navigate between
applications and a control for hearing the preview of a container. Also you are going to learn how
to select or activate interface controls.

4.7.1 Pop-up dialogues and Selecting Objects

From the large container, enter the container by pressing the 2/Down key. Navigate through the
list of push buttons until you hear the push button titled "Compose." (It's the 10th button in the
group). So far you have been navigating through the application interface without actually
operating any of the interface controls. It's important to be able to learn the contents of an interface
without worrying about accidently pushing the wrong button and so on. For this reason,
UltraSonix provides separate controls for navigation and for selection.

You may have heard sighted users talk about double-clicking on objects with their mouse in order

to make something happen in an interface. In UltraSonix double-clicking is one form of selection.
To select an object, you need to press the Enter key (on the numeric keypad) when you are located
at that object. For example, you are currently located at the "Compose” push button. To select the
push button, simply press the Enter key and you will hear a series of sounds.

The first sound you hear is a ripping sound. This is the sound for selection and indicates that you
have selected the push button. In xmailtool, selecting the "Compose" button causes a pop-up
dialogue to appear. A pop-up dialogue is another window that the application uses temporarily. In
this application, the dialogue is used to write and send an electronic mail message. Right now,
we're just going to practice creating and dismissing the pop-up dialogue.

The second sound you hear is a whistle sound with an rising pitch. This sound indicates that a
pop-up has come into view. The last sound is a pogo-stick sound which indicates that you have
been moved to the pop-up dialogue. If you press the 5 key, you will hear the pogo sound and
"Pop-up dialogue."

LeEUUNRLSIA. JIEUMH LIBRARY

The structure of the pop-up is pretty simple. Navigate down (2/Down arrow) to the window of the
dialogue. Navigate down again and you will hear the container sound. Navigate to the right and
you reach a text area. This is where you would write the email message. We'll explain how to do
this in the next section. Navigate back to the container. In the container are two push buttons,
reply and cancel. Move over to the cancel button and select it (Enter key). You will hear the
ripping sound (selection) and a whistle sound with a descending pitch as the pop-up disappears.
The last sound is the push button sound for the "Compose" button as you are moved to your last
previous location before the pop-up. Practice selecting Compose and dismissing the pop-up with
the Cancel button.

Summary of controls presented in this section:
Enter: Selection
Summary of sounds presented in this section:
Ripping paper: Selecting an object
Whistle up/down: Pop-up appearing / disappearing

4.7.2 More on Moving Between Application

—

If you want to move back and forth between applications while maintaining your last known
position you can use the controls shift-right and shift-left. For example, you should now be
running two applications, the UltraSonix console and xmailtool. Move to the UltraSonix console
by pressing and holding the shift key and then pressing the 4/left key, releasing both together.
Then move back to xmailtool by pressing the shift and 6/right key combination. You should be
now be located at your previous position, most likely the compose key.

Summary of controls presented in this section:

Shift-right: Move to the next application, retain context
Shift-left: Move to the previous application, retain
context

4.7.3 Hearing a Preview of a Container

Sometimes you may want to get an overview of a portion of an interface without actually
navigating throughout the interface contents. By pressing the combination shift-5, you can hear an
auditory preview of any type of container. For example, navigate to the large container with all the
push buttons. Press shift, holding it down, and then press 5 on the numeric keypad. You will
hear short snippets of the auditory icons for all the objects in the container. In this case, you'll
hear the beginning of the push button sound a number of times.

A window is simply a special case of a container. Press 8/Up to navigate to the main window of
xmailtool and then press shift-5. You will hear short snippets of all the objects in the window. In
this case, you will hear a number of different sounds since the window contains a number of
different objects.

The purpose of a preview is to give you an overall feel for the contents of a container. You should
be able to roughly gauge the number and diversity of objects in a container.

WEUKIsIA 1ECH LIBRARY

Summary of controls presented in this section:

Shift-5: Hear preview of a container

4.7.4 Hearing the Object Hierarchy

In some cases, you may want to determine your current location by hearing the path from the top
of the application tree to your current location. Like a preview, you will hear short auditory
snippets for the objects in the path, from the top of the tree structure to your current location. To
hear the path, simply press the alt key, holding the key down, and then press the 5 key on the
numeric keypad. You may want to navigate to the Compose push button and practice requesting
the path information.

Summary of controls presented in this section:

Alt-5: Hear the path from the top to the current location

4.8 Accessing Text

In this section, we will discuss the different controls used to review and enter textual information.
To practice this portion, you may want to navigate back to the UltraSonix console (Shift-left) and

then navigate to the text area. You will need to enter text mode to be able to read and enter text.
You enter text mode by pressing the ./Del key on the numeric keypad. You will hear a rolling
sound, like a drawer opening. This sound indicates entering and exiting text mode. You will not
be able to enter text mode while on an object that does not support reading or writing text.

After you have entered text mode, type the following command: "more text-sample.” This
command will cause the contents of the file "text-sample" to be displayed on the console. You can
use this sample, to learn how to review and enter text.

A common concept in screen readers is the distinction between the review cursor and the edit
cursor. The review cursor indicates the current location for reading text while the edit cursor
indicates the current location for editing text. UltraSonix provides controls for moving both
cursors as well as controls for making the cursors point at the same location.

The basic commands are:

2/Down Arrow Move down and read one line
4/Left Arrow Move left and read one character
6/Right Arrow Move right and read one character
8/Up Arrow Move up and read one line

1/End: Read this character

3/PgDn: Read this word

5: Read this line

7/Home: Read this sentence

9/PgUp: Read this paragraph

The data returned by these commands is passed through whatever filters are active for the current
screenreader (see Controlling the Presentation of Text Using Filters, below).

The commands to read character/word/line/sentence/paragraph may be modified by the use of the
shift, control, and meta keys. The "shift” key instructs the screenreader to read the next item,
while the "control" key instructs the screenreader to read the previous one. For example, pressing
the "control” and keypad 7 keys simultaneously instructs the screenreader to read the sentence
previous to the current cursor position. Pressing the "shift”, "meta”, and keypad 3 keys
simultaneously instructs the screenreader to read the next word from the current cursor position,
and to update the current cursor ("move") to a position within that word. The shift and control
keys may not be used simultaneously.

These commands move from the "active” cursor. The commands to control the various cursor
modes are as follows:

/ Cursor status: announce the current cursor
position, the current cursor (edit or review)
and the following mode (see below)

shift + / Toggle cursor mode: switch from edit to review
mode or vice versa (see below)

control +/ Toggle follow mode (see below)

The "cursor mode" refers to the currently active cursor for the current screenreader. By default,
each cursor begins in "edit” mode, which means that the cursor movement keys will control the
edit cursor. Toggling the cursor mode will cause the screenreader to be placed in "review" mode,
which will cause the cursor keys to control the review cursor instead. These cursors may be
moved and queried independently of one another.

WELUJKLsIA 18U M1 1ISKANRY

r

By default, in "edit" mode, the screenreader *reads* from the current position, outputting the
requested information to the display device(s), but leaving the cursor in the same position. In
"review" mode, by contrast, the screenreader *moves*, or outputs the requested information to the
display device(s), and then updates the cursor to point to a location within the text that was just
read. The "meta" key toggles the default read/move behavior for the current mode. That is, in
"edit” mode the cursor is moved, and in "review" mode, the cursor reads without changing
position.

"Follow mode" refers to the manner in which cursors behave when the cursor mode is toggled. In
"following" mode, the review cursor will begin at the same location as the edit cursor when review
mode is invoked. In "not following" mode, the review cursor maintains a persistent view of its
own position; when review mode is invoked, the cursor will begin at the last location where it was
before edit mode was invoked (of course, if review mode has not been previously invoked, the
review cursor will begin start of the text area).

A useful control stops the playing of any speech and auditory icons that are currently being played.
This control is the O/Ins key at the bottom left of the numeric keypad.

O/Ins: Stop all currently playing speech and audio
Some of the configuration for reading text is accomplished in the UltraSonix configuration files.
See the next section for details.
4.8.1 Controlling the Presentation of Text Using Filters
Filters may be used to control the presentation of information to the user. The following sections

describe the specification, configuration, and usage of the filtering system for the screenreader in
UltraSonix.

OLUKUIAR I1ECTT LUBKAKXT

4.8.1.1 What is a Filter?

A filter is an entity within the UltraSonix system which is defined with a series of commands
which allow the user to alter the default presentation of text on the screen. A filter consists of one
or more commands which are entered in a filter configuration file, where each command indicates a
particular pattern in the text area which should be replaced by another. In this way, substitutions
may be made from the standard way in which text is presented to the user to a user-defined
presentation. A list of filters is loaded into each screenreader at startup. These filters are applied in
the order that they are loaded.

A sample filter is described below:

This is a comment and is ignored
filter test {

"Bob" "Robert” # So is this -- everything until the
"[Tt}he" "that" # end of the line is tossed away.
"[0-9]+" "($old)" # Enclose digits in parentheses
HIGHLIGHT "highlighting"

FONT "font"

)

ﬁ

We will now explain, line by line, the format of the filters in the definition file. First, each filter
begins with the keyword "filter", followed by a unique, case-sensitive name, and a pair of
enclosing braces ("{ }"). The word filter is not case-sensitive, and may therefore be specified as
"filter”, "Filter", "FiLtEr", etc. A duplicate filter entry will discard earlier filter entries.

Following the initial opening brace are filter commands, specified one per line. Each filter
command consists of a trigger and a replacement expression. The trigger is the condition which
activates the filter, while the replacement expression is what the filter does when it is activated.
We'll see exactly what this means as we examine each command.

The first command consists of the activation "Bob" and the replacement "Robert". This means that
any instance of the characters "Bob" (the activation is case sensitive) will be replaced by the word
Robert. For example, in the sentence: "Bob Bobbit went bowling", the filter would present the
sentence “"Robert Robertbit went bowling". The quotes around both the activation and replacement
strings are only used by the filter to recognize phrases, and are not used when the filter searches
for an activating pattern, nor when the pattern is replaced. To actually use quotation marks in
either the activation string, the sequence \" must be used instead of the " character by itself.
Whitespace and any characters following the # character are discarded by the filter parser, so you
may feel free to indent, format, and comment your filter files as you see fit.

The second command introduces *regular expression* notation. More help on regular expressions
may be found in the man pages for the "grep” utility, or in the lexx/yacc programming guide. Any
activation enclosed in double-quotes is actually a *regular expression* and may use the standard
regular expression notation to declare *sets* of patterns, rather than direct match patterns, such as
"Bob" in the first command. This command actually searches for patterns which begin with either
"The" or "the", and replaces it with "that".

The third command introduces the *expression substitution* variable. At times, it will be
convenient to include the text of the pattern which triggered the activation in the replacement
expression itself. This is done using the sequence of symbols "$old". When this is used, the
pattern that matched the activation will be substituted into the position marked by $old in the
replacement expression. For this command, any non-zero sequence of digits is found, and is
surrounded by parentheses. For example, the sentence "Jan lives at 347 Huntsville Lane, Tacoma
WA 50487" becomes "Jan lives at (347) Huntsville Lane, Tacoma WA (50487)". Note that the
first time the activation pattern is triggered, the value of $old is 347, while the second time it is
triggered, the value is 50487.

- OCUKUIA IEUIT LIDKART

The last two expressions merely demonstrate activation patterns we have not seen before. Instead i
of regular expressions, which examine the content of the text presented to the user, the activation
patterns HIGHLIGHT and FONT examine the actual onscreen presentation of the text itself. As
the filter scans the text from that it is reading, it searches for changes in the text attributes stores in
the representation model and inserts the appropriate replacement expression wherever the attribute
change takes place.

The filter definition is terminated by a closing brace.

4.8.1.2 How are Filters Loaded?

Filters are defined in simple text files which have one or more declarations for filters. A

declaration consists of the keyword "filter" and a unique name used to identify that filter, followed '
by the commands that the filter is to invoke. The names of the filters are case-sensitive, so the ;
names "BOB" and "Bob", for example, refer to different filters. When UltraSonix is started up,

each of the filter files defined in the variable "stFilterDefinitionFiles" is loaded, one at a time, in the

order they are specified. Each file then loads the individual filter definitions within the file in the
order that they occur. If no errors occur in the parsing of the filter, its definition is stored in a
dictionary of filter definitions, and may be referenced using the name specified in its definition.

If the configuration variable "srFilterDefinitionFiles" does not exist, only the filters in the file
"default.flt" will be loaded.

Once filters have been loaded into the dictionary for the UltraSonix system, they may be registered
for use with the screenreader. The filters to be used are specified in the variable "srFilters" in the
order in which they are to be applied.

If the configuration variable "srFilters" does not exist, then the filters "SpeakCaps" and
"SpeakUNIX" will be applied, in that order.

4.8.1.3 Using Filters in UltraSonix

The following section describes how to examine which filters are operative for a particular
screenreader, as well as how to interactively enable and disable them.

* Display current active status of filters.
Shift-* Toggle filter enable mode. This feature may only
be activated when UltraSonix is in text mode.

The filter display command causes each filter to be displayed to the output device. The position of
the filter is announced, along with the name of the filter, and its current status (off or on).

Entering filter toggle mode allows the user to interactively enable or disable the current filters
loaded using the keypad + and - keys. In filter toggle mode, UltraSonix cycles through the filters
registered with the screenreader (specified in the "srFilters" configuration variable) and waits for
the user to enable or disable each filter, using the keypad "+" and "-" keys. Pressing the "*" key
announces the current filter by name, position, and current status (ON or OFF). Pressing the "+"
key will enable the current filter, while pressing the "-" key will disable it. Filter toggle mode
automatically exits when all filters have been configured in this manner, or the user may exit the
mode manually by pressing Shift-*.

/

5.0 BRAILLE OUTPUT

.. CIECIRTIAR ICCTT LIDKARART

5.1 Configuring UltraSonix to Use a Braille Terminal

UltraSonix supports the Alva ATB 3/20 and the Alva ATB 3/80 braille terminals. To use either
Braille terminal with UltraSonix, connect the Braille terminals to a machine as specified by the
user's manual. Then either start the server daemon, alvad from the command line, or specify the
server in the config file (see the documentation on starting servers from UltraSonix).

The variable "brailleLoadable” must also be set to "Alva" in the config file (see Section 6.0,
"Configuration," for more details):

brailleLoadable ="Alva"
and the model must also be specified with the "alvaModel" variable:
alvaModel = "Alva 3/20"

or

alvaModel = "Alva 3/80"

(3/20 is the portable 20 cell mode! with three status cells while the 3/80 is the 80 cell model with
five status cells.)

These will tell UltraSonix to look for the loadable object named Alva.so in one of the directories
specified by the loadableSearchPath variable in the configuration file.

5.2 Using the Alva Braille Terminal

Currently when the user is in text mode, the current line, word, or character, depending on the
navigational mode, is sent to the Braille terminal as well as the speech device. The user can also
navigate in the text area using the keys on the front panels of the Braille terminal. These keys work
as the navigation keys when the user is in text mode.

In addition, there is a jumpscroll mode which will cause the Braille terminal to scroll to the next 20
or 80 characters on the line, depending on the model. To toggle in and out of this mode, use the
command:

braille toggle jumpScroll

at the UltraSonix command prompt, or you can use the graphical console application to configure
Jjump scroll mode.

There is also a command to retrieve the capabilities of the current Alva model:
braille cap <capability>
The capabilities the user can query are:

displayCells
statusCells
highlightSupported
hasCursorKeys
hasProgKey
hasHomeKey
otherKeys

6.0 CONFIGURATION

In order to use UltraSonix, the software must be configured properly. The UltraSonix software is
higly configurable: it is possible to completely change the operation of the software by editing a set
of configuration files. Most of the time, only very simple configuration is required: telling the
system what hardware devices are attached, for example. At other times, "power users" may wish
to fundamentally alter the behavior of the system.

Section 6.1, "Basic Configuration,” describes the day-to-day configuration of the system, the
directory layout and how it affects the operation of the software, and the tasks that must be .
performed to allow the software to run after installation. Section 6.2, "Advanced Configuration,"

—

describes more powerful configuration techniques that can be used to change the non-visual
interfaces produced by UltraSonix.

6.1 Basic Configuration

This section describes the basics of how UltraSonix finds its required support files, how
applications use the modified X libraries that are required to run under UltraSonix, and required
modifications to the configuration file.

6.1.1 Essentials

UltraSonix should be installed on your system, preferrably in the directory /opt/GTsonicx. The
GTsonicx directory contains the executables for UltraSonix and other programs, libraries used by
these programs, and various configuration files.

Several of the subdirectories under GTsonicx are particularly important for configuration of the
system:

6.1.1.1 lib

The lib directory contains libraries which are used by applications running under UltraSonix, and
by UltraSonix itself. For applications to communicate with UltraSonix, they must use special,
modified versions of the X Window System libraries that know how to communicate with the
access software. Typically the substitution of these libraries is done at runtime by changing the
LD_LIBRARY_PATH environment variable to "point" to the modified versions of the X libraries.

The easiest way to run applications under UltraSonix is to use the "sxrun" script. sxrun executes
applications with the LD_LIBRARY_PATH variable set to use the modified libraries.

CILC/RLTIM 100V 1T Ljorsnr

Only two X libraries have been modified to work with UltraSonix: 1ibX11 and libXt. If any other
X libraries are used by applications (libXm, libXmu, etc.), the unmodified versions of these can be
used. The modified 1ibX11 and libXt are *required* for applications to work however.

If you must set the LD_LIBRARY_PATH "by hand," or cannot use sxrun for whatever reason,
you need to know how the libraries under the lib directory are used.

The subdirectories under lib are RS, R6, RAP, and Ré.orig.
6.1.1.1.1 R6.orig

The R6.orig directory contains unmodified versions of the X11R6 libraries. These libraries should
only be used by the UltraSonix executable itself. If applications use these unmodified libraries,
they will be unable to communicate with UltraSonix since the required modifications are not
present in these libraries.

6.1.1.1.2 RS

The RS directory contains versions of the X11RS libraries which have been modified to
communicate with UltraSonix. 1ibX11 and libXt have these changes; the other libraries in this
directory are links to unmodified RS libraries in /usr/openwin/lib.

Most applications should be run with their LD_LIBRARY_PATH set to this RS directory. The RS
libraries are what we use in our test environment.

6.1.1.1.3 R6

The R6 directory contains modified 1ibX 11 and 1ibXt versions from the X11R6 distribution. The
other libraries in this directory are links to the unmodified R6 libraries in R6.orig.

There are currently very few R6 applications in existence; in fact current versions of Motif only
support R5. We provide these R6 libraries as a "work in progress."

6.1.1.2 etc

The /etc directory contains various configuration files and scripts used by the UltraSonix software.
It is essential that the UltraSonix software be able to find the contents of this directory when it
starts. See the section below for a description of what these files do and how UltraSonix locates
them at start-up time.

6.1.2 Finding the Configuration File

UltraSonix must be able to load a configuration file at startup time in order to operate. There are
several places where the system looks for this file, and you can override the default locations in
several ways.

By default, UltraSonix looks in order in the following locations for a configuration file:

$HOME/.mercator.config
~/.mercator.config
/opt/GTsonicx/etc/mercator.config

If a configuration file is not found in any of these locations, and an explicit path to it has not been
provided, then the system will not start and an error message will be printed.

There are two ways to provide an explicit path to a configuration file. The first is to use the -f
option on the command line when starting the system. The second is to set the
MERCATOR_CONFIG environment variable to contain the path to the file. The -f option takes
precedence over the environment variable.

6.1.3 Editing the Configuration File

The configuration file contains several options that describe how the system will behave. In
particular, the file contains path information to various template files, filters, and sound files which
the system must be able to locate to function properly. If you put an inappropriate option or wrong
path into the configuration file, it is likely that UltraSonix will not function.

After installing the software, you must at a minimum tell the system what hardware devices are
attached.

There are several "sections" in the configuration file that you can edit. The basic configuration
options are described here; others are described in Section 6.2, "Advanced Configuration."

sewss ©Tle &TINTIAY 146 GTT LIDRATT

© S A o T A

¢ ey .

[

F,

6.1.3.1 Paths

The config file specifies several paths to files which are needed by the system. In general, these
paths *must* be set correctly or the system will fail.

The first path specifies the location of the various TCL scripts used by UltraSonix to build its
interfaces:

mercatorTclPath = "/opt/GTsonicx/lib/scripts”

The next important path specifies the location of the "template” files which govern per-widget and
per-appliation behavior. This attribute specifies a list of subdirectories under which template files
will be loaded. All files ending with the .tmpl suffix under these directories will be loaded:

templateDirectories = ("/opt/GTsonicx/lib/templates/Athena”,
"/opt/GTsonicx/lib/templates/Motif",
"/opt/GTsonicx/lib/templates/Apps”)

The final path is a list of directories in which to search for loadable I/O drivers:

loadableSearchPath = ("/opt/GTsonicx/lib/loadables")

6.1.3.3 Configuration of Loadable Modules

The configuration file specifies what loadable I/O drivers should be used by UltraSonix. Several
attributes are used to specify which drivers should be loaded: speechLoadable, audioLoadable,
and brailleLoadable tell UltraSonix which Speech, Audio, and Braille modules will be used. A
fourth attribute, miscLoadables, contains a list of other modules to be loaded. Generally these are
for input-only devices such as keypads:

STLA/ATIM 1L0UTT LICRAMRE

speechLoadable = "Dectalk"
audioLoadable = "NetAudio"
brailleL.oadable ="Alva"
miscLoadables , = ("Genovations")

Note that the configuration above (Dectalk, NetAudio, etc.) represents the environment under
which we run UltraSonix ourselves, so it is probably the most robust.

The loadable modules themselves may need to know various configuration information which they
will try to retrieve from the config file. Check the docs for the particular /O modules you are
using to see what (if any) extra config information they may use. Below is the set of attributes
used by the modules above, since they represent the default environment:

a3

#1# Dectalk-specific configuration
HitH

dectalkServer = ("/opt/GTsonicx/bin/dectalkd"”, "-f", "-t", "/dev/ttya")
dectalkTimeout =4

i

#Ht NetAudio-specific configuration

i

netaudioServer = ("/opt/GTsonicx/bin/netaudiod")

—

H#Ht#

#H#H# Alva-specific configuration

#HH

alvaServer = ("/opt/GTsonicx/bin/alvad”, "-d", "/dev/ttyb™)
alvaModel = "Alva 3/20"

In general, particular I/O modules will look for information in the config file to start any servers
that they may require, and set device-specific characteristics.
6.1.3.4 ScreenReader Configuration

The config file contains attributes which describe the default settings for the screenreader module.
These are described in more detail in the screenreader documentation:

L3
srOperationMode = REVIEW 4
srSpeakingMode =WORD :"
srNumberFormats =WORD :
srCapsMode = NODIFF :
srTextControl = FALSE '
srtMathControl = FALSE .
srMiscControl =FALSE :
srUnixSpeak =FALSE
srIncomingMode = WORD !
srSpeechRate =180 !
srVoice "p\n” :
srReturnClick "/opt/GTsonicx/sounds/TypeReturn.au”

srSpaceClick "/opt/GTsonicx/sounds/TypeSpace.au”
srKeyClick "/opt/GTsonicx/sounds/TypeKey.au" '
srWrapSound = "/opt/GTsonicx/sounds/beep_jazz_piano.au”

The most important screenreader configuration options are used to control filter behavior. The
stFilterDefinitionFiles is a list of files which contain filter definitions. The paths in this list must be
accurate for the filters to be found. The srFilters attribute is a list of the filters to be used in each

screenreader.
srFilterDefinitionFiles = ("default.fit")
srFilters = ("SpeakCaps", "SpeakUNIX")

6.1.3.5 Output Configuration

You can control the amount of output generated by UltraSonix, as well as where that output should

be sent:
errorLevel =4
errorOutput = STDERR

ErrorLevel is a "filter” which controls how much output will pass the system. The value of 8
allows all output to be written. 4 is useful as it only allows severe warnings and errors to be
printed.

6.1.3.6 Console Configuration

The config file specifies what (if any) console application will be run when UltraSonix starts.

console = ("/opt/GTsonicx/gui-console")
consoleWait =5
consoleEnv = ("LD_LIBRARY_PATH=/opt/GTsonicx/lib/R5")

The "console" attribute provides the path of the console application to be started automatically.
"ConsoleWait" specifies how long UltraSonix will wait for the console to start, before it defaults to
using standard input and output for I/O. The "consoleEnv" attribute is used to provide an
alternative environment for the console process. Here we specify the path to our modified X
libraries so that the console will be available under UltraSonix.

6.2 Advanced Configuration

‘u

tu
UltraSonix provides extensive support for customization by administrators and "power users." ’
This section describes some of these facilities. Section 6.2.1 describes the notion of templates, 3
which are used to customize behavior of objects in UltraSonix. Section 6.2.2 details some 3
additional features in the configuration file that can be used for advanced customization. Section ‘-
6.2.3 describes how to extend the configuration file and template file parsers to accept new '3
attributes without the need to recompile the system. Section 6.2.4 describes the tcl files that d

UltraSonix uses to build its non-visual interfaces.

6.2.1 Template Configuration

UltraSonix uses the notion of "templates” to control the presentation and use of particular widgets
and applications. By editing a template file, you can change how the system wil respond when it
encounters a particular object in an application. Templates capture the widget-and application-
specific information required by UltraSonix.

&l RiTiA

6.2.1.1 Widget Template Configuration

/
Each class of objects (otherwise known as widgets) can be configured using templates. Here is the
template for the Motif widget XmPushButton.

classTemplate XmPushButton {

navigable = TRUE
sound = "Sounds/winding.au"
sensitive = [SensitiveProc]

mappedWhenManaged = [MapWhenMgdProc]
}

The token "classTemplate” is a reserved word in the template parser that indicates that this template
is specifying the attributes of an entire class of widgets. The string " XmPushButton" denotes the
widget class that this template will be applied to.

Within the braces are a set of attributes that are being assigned to this template. Each attribute
understood by UltraSonix has a fixed type that it can take; allowable types are boolean, string,
integer, and list of strings. Further, the value of each attribute can specified either "simply" (by
providing an integer, string, and so forth), or by a "procedure” (see below).

Four attributes are shown here. The "navigable" attribute is of type boolean, and indicates whether
objects of this class will be considered "viewable" to UltraSonix. The "sound" attribute indicates
the sound to play when the user navigates to an object of this class, and is of type string. The next
two attributes, "sensitive” and "mappedWhenManaged" are of type boolean, but their values are
specified using *procedures*.

The square bracket notation in a template file indicates that the string inside the bracket is the name
of a tcl procedure that should be run whenever the value is needed. The use of procedures allows
dynamic setting of template attributes. (TCL stands for Tool Command Language, which is an
interpreted, interactive language). The tcl code for SensitiveProc is shown below:

proc SensitiveProc {type node} {
if { [resource $node get sensitive] == "TRUE" } {
return "TRUE"
} else {
return "FALSE"
}
}

Writing these procedures will require an understanding of tcl and, at least, a partial understanding
of UltraSonix internals. Many users will not need to configure UltraSonix at this level.

By using class templates, you can affect change in the way UltraSonix handles entire classes of
widgets: the XmPushButton example shown above will change the behavior for all Motif Push
Buttons in all applications running under UltraSonix.

Many times it may be useful to selectively change the behavior of one particular widget in one
particular application, however. To this end, UltraSonix supports the notion of "object templates.”
Object templates work exactly the same as class templates, only they allow you to uniquely specify
one individual widget to which the specified attributes will apply.

& WAWT 161 BV

Here is an example of an object template that overrides the default push button behavior for one
particular push button, this one in xmailtool:

objectTemplate XMailTobl.outer_box.quit {
sound = "Sounds/flush.au"

}

Note here the use of the key word "objectTemplate” (rather than "classTemplate") to indicate that
we're specifying one particular object, rather than an entire class of objects. Also, the specification
of the object we're interested in is the "long name" of the widget. This long name is similar to
Xrm-style naming in the X Window System, except that wildcards are not supported, and the
specification tokens must be widget names, not classes.

Both object and class templates support exactly the same attributes; they just provide different
mechanisms for setting those attributes. Any values not explicitly provided in an object template
will "fall back" to the class template for the widget class.

6.2.1.2 Application Template Configuration

UltraSonix also provides the notion of "application templates” to control per-application settings.
Currently, application templates are not widely used. Here is an example of a simple application
template, however:

appTemplate XMailTool {
readySound = "/opt/GTsonicx/lib/Sounds/electric.au”
shutdownSound = "/opt/GTsonicx/lib/Sounds/flush.au"

}

This example shows two attributes that control the start up and shut down sounds that will be
played for xmailtool. Note that application templates support a *different* set of attributes than
class/object templates. Application template attributes specify behavior for an entire application,
not just one widget or class of widgets.

6.2.2 Advanced Configuration File Settings

As we have seen, templates provide a tool for customizing the behavior of widgets, classes of
widgets, and applications. To simplify the writing of templates, UltraSonix allows you to omit
certain attributes when you write a new template file. For example, you may wish to create a class
template for a new widget class, "XmFooBar," but have most of the attributes be the same as other
class templates.

Thus, to simplify the creation of templates, and to standardize behavior, UltraSonix allows you to
specify "fallback defaults" for template attributes in the configuration file. These fallbacks are the
values that your template attributes will take if values for them are not explicitly provided.

As a safety mechanism, UltraSonix *requires* you to specify fallbacks for all template attributes in
your configuration file. This prevents the case where you omit an attribute from a template and
also neglect to provide a fallback for it (which would cause a runtime error).

UltraSonix will inform you if you omit a required fallback value from the configuration file.

Be careful about changing these fallbacks; changing them carelessly may cause unexpected
behavior:

defaultClassNavigable =TRUE

defaultClassShell =TRUE

defaultClassAllowTextMode =FALSE

defaultClassSound = "/opt/GTsonicx/lib/Sounds/bong.au"
defaultClassSpeakOnEnter = ""

defaultClassSpeakOnlInfo = ""

Note that the names for the fallbacks are derived from the template attribute names.

6.2.3 Extending the Configuration File/Template File Parser

If you need to extensively customize the template mechanism used by UltraSonix, you may find
that it would be helpful to add new attributes to templates. By default, the template file parser
understands only a handful of "hard-coded" attributes that are already understood by the internals
of UltraSonix.

Cla WIS/ Sk)] MIVINUME

" _____

There is a mechanism for extending the parser so that it can understand new attributes easily,
however. You can extend the parser by editing the file "attributes" file. UltraSonix searches for an
attributes file in much the same way it searches for a configuration file.

By default, UltraSonix looks in order in the following locations for an attribute file:

$HOME/.mercator.attrib
~/.mercator.attrib
/opt/GTsonicx/etc/mercator.attrib

If an attribute file is not found in any of these locations, and an explicit path to it has not been
provided, then the system will assume that you're not augmenting the template parser with an
attributes file.

There are two ways to provide an explicit path to an attributes file. The first is to use the -a option
on the command line when starting the system. The second is to set the MERCATOR_ATTRIB
environment variable to contain the path to the file. The -a option takes precedence over the
environment variable.

Here is an example of an attributes file that extends the template parser to add several attributes (the
attributes shown here are actually already used by UltraSonix, and should not be added to the
attributes file):

#NAME TYPE FALLBACK NAME TEMPLATE TYPE
R R R
navigable = BOOLEAN defaultClassNavigable CLASS

volume INTEGER defaultClassVolume CLASS

sound STRING defaultClassSound CLASS

readySound STRING defaultAppReadySound APP

The attributes file is based on a four-column format. The first column gives the name of the
attribute that will now be viable in the template files. The second is the type of the attribute (either
BOOLEAN, INTEGER, STRING, and STRINGLIST. The third column provides the name that
will be used as a fallback in the configuration file (recall that all template attributes *must* have a
fallback value specified in the configuration file). The fourth column indicates what type of
templates the new attribute may appear in. Legal values are CLASS (indicating that the attribute
can appear in either class or object templates), and APP (indicating that the attribute can appear in
application templates).

Remember that if you add a new attribute via the attributes file, then you must provide a fallback
value for it in the configuration file. UltraSonix will not start if these two files are "out of sync."

6.2.4 Using TCL Files

The UltraSonix software contains an embedded interpreter for the tcl language. All interfaces in
UltraSonix are generated through tcl scripts that are run in response to events: either changes in the
application state or input by users. By expressing interface behavior in tcl, separately from the
"core" system, which is implemented in C++, we can easily change the behavior of the system to
support radically new interfaces.

Sl WIS IR SiuNvl ! MVIVVYE

Tcl scripts specify the following:

- How to handle user input
"What happens when the user pressed the 5 key on the keypad?”
- What interface output to generate
"What output is presented when the user navigates to a grayed
out pushbutton?”
- When to simulate application input
"What happens when the user presses the enter key?"
- Querying the interface model
"Is the current object sensitive to user input?”
- How to handle dynamic application interface changes
"What happens when a dialog box appears?”

When UltraSonix first starts, it loads a tc] script that installs a set of behaviors (called "actions")
that are executed whenever an application's interface changes, and a set of "bindings" that specify
what will happen when the user generates some input.

As shipped, the first tcl file loaded into the system is called "mercator.tcl." Mercator.tcl establishes
a basic set of actions and bindings, and defines some utility procedures. It also loads the following
other tcl files:

text.tcl Provides text-mode support.
navigate.tcl Basic navigation algorithms.
audio.tcl Audio support for playing sounds.
templateprocs.tcl Procedures used in templates.

Any of these files may be changed to extend or alter the behavior of the system.

7.0 REFERENCE

7.1 Navigation Commands

8/Up arrow Go up one level to the parent of the current object
2/Down arrow: Go down one level to the first child of the current object
6/Right arrow: Go to the next sibling in a group of objects
4/Left arrow: / Go to the previous sibling in a group of objects
3/PgDn: Move to the last object in a group

1/End: Move to the first object in a group

Alt-right: Move to the next application

Alt-left: Move to the previous application

Shift-right: Move to the next application, retain context
Shift-left: Move to the previous application, retain context
Shift-5: Hear preview of a container

Alt-5: Hear the path from the top to the current location
Enter: Selection

+: Begin/End Drag/Release

fDel: Enter/Exit text mode

= e -

T L ¥ 7y BAwaus s -lu_ll!l_'

7.2 Sounds

Tapping on glass:
Opening door:
Message bar:
Text area:
Keyboard tap:
Pull-chain:
Rebounding ball:
Text area:

Winding:
Flushing:

Paper shuffle:
Music:

Ripping paper:
Whistle up/down:

Muffled:
Excited:
Deep pitch:
High pitch:

Window
Container
Printer
Typewriter
Push button
Toggle button
Out of bounds
Typewriter

Application starting

Application ending

Switching between applications
Focus moved to an application
Selecting an object

Pop-up appearing / disappearing

Greyed out object

Selected or highlighted object
Large object (i.e. container or text)
Small object (i.e. container or text)

7.3 Text Review and Editing Commands

SDel:
OflIns:

1/End:

3/PgDn:

5:

7/Home: ’
9/PgUp:

Shift-{1,3,5,7,9}
Control-{1,3,5,7,9}
Meta-{1,3,5,7,9}

/
Shift-/
Control-/

*

Shift-*

+

Enter/Exit text mode
Stop all currently playing speech and audio

Read this character
Read this word
Read this line

Read this sentence
Read this paragraph

Read next item
Read previous item
Toggle default move/read behavior

Announce cursor
Toggle cursor mode
Toggle follow mode

Announce filter status
Toggle filter enable mode

Enable filter (filter enable mode only)
Disable filter (filter enable mode only)

g7

FRO AT Sdw oy § i

i

7.4 Class and Object Template Attributes

This section describes the attributes that are supported in class and object templates. Recall that
both object and class attributes support the same attributes; they merely provide different
mechanisms for naming the objects those attributes will be associated with.

Each entry here lists the name of the attribute that appears in the template, the type of the attribute,
and the name of the fallback for the attribute, which appears in the configuration file.

navigable BOOLEAN defaultClassNavigable

Indicates whether or not the object will be considered "navigable" by UltraSonix. Classes that are
not navigable are essentially "invisible" and are ignored by the system.

shell BOOLEAN defaultClassShell

Indicates whether or not the object will be treated as a shell (top-level window). The fallback
should be set to TRUE and overridden for non-shell classes. This is so application shells (which
are created with a class name different than ApplicationShell) will be correctly detected as top-level
windows.

allowTextMode BOOLEAN defaultClassAllowTextMode

If set to TRUE, allowTextMode indicates that the object will support text mode navigation.

sensitive BOOLEAN defaultClassSensitive
The sensitive attribute is used to indicate whether or not an object is sensitive (that is, whether it

will accept user input). This is typically set to a procedure that retrieves the value of the sensitive
resource from the object.

looped BOOLEAN defaultClassLooped

Indicates whether the “entry" sound for this object will be looped (played repeatedly).

mappedWhenManaged BOOLEAN defaultClassMappedWhenManaged

Determines whether objects that are managed will also be mapped. This attribute is typically set to
a procedure that retrieves the value of the mappedWhenManaged resource from the widget.

allowEscape BOOLEAN defaultClassAllowEscape
Indicates whether it is possible for users to exit dialog boxes by navigating up and out of them (if

set to TRUE), or whether users are confined to dialog boxes as long as they are posted (if set to
FALSE).

volume INTEGER defaultClassVolume

WA OTIECTA T Bhe i) S kil MRS

The volume at which to play the "entry" sound for this object.

muffle INTEGER defaultClassMuffle

The amount of muffling to use when playing the "entry" sound for this object.

rate INTEGER defaultClassRate

The rate of speed at which to play the "entry” sound for this object.

delay INTEGER defaultClassDelay

The amount of delay before playing the "entry"” sound for this object.

leftMargin INTEGER defaultClassLeftMargin
rightMargin INTEGER defaultClassRightMargin
topMargin INTEGER defaultClassTopMargin
bottomMargin INTEGER defaultClassBottomMargin

The values of the margins for this object. These attributes are only used by the ProtoTextRep
class; typically they are set to procedures that retrieve the appropriate resources from the widget.

sound STRING defaultClassSound

The "entry” sound for this object.

speakOnEnter STRING defaultClassSpeakOnEnter

The string to speak when,this object is entered.

speakOnlnfo STRING defaultClassSpeakOnlnfo

A string of "extra" text that is spoken when the Info action is invoked on this object.

unsafeResources STRINGLIST defaultClassUnsafeResources

A list of the resources that may be set by the application or widget in a way that bypasses the RAP
hooks. Unsafe resources must be retrieved explicitly each time they are used, and are thus
extremely expensive. (NOTE: unsafeResources is not currently implemented.)

creation INTEGER defaultClassCreation
destruction INTEGER defaultClassDestruction
mapped INTEGER defaultClassMapped
unmapped INTEGER defaultClassUnmapped
managed INTEGER defaultClassManaged

STRIRTIIRTA R P RS BN KRS

unmanaged INTEGER defaultClassUnmanaged
realized INTEGER defaultClassRealized
unrealized INTEGER defaultClassUnrealized

The values of these attributes are retrieved each time an object is created, destroyed, and so on.
They are typically set to procedures that invoke some widget-instance or widget-class specific
functionality. In essence, they provide a widget-specific variant of the Action mechanism.
srFilters STRINGLIST defaultClassSrFilters

A list of the filters that should be installed on this object's screen reader.

srDelimitChars STRING defaultClassSrDelimitChars

A string of the characters that are used as delimiters by the object's screen reader.

srTerminalChars STRING defaultClassSrTerminalChars

A string of the characters that are used as terminals by the object's screen reader.

7.5 Application Template Attributes
readySound STRING defaultAppReadySound

The sound to play when this application becomes ready. (NOTE: This attribute is currently not
implemented.)

WA NTIINTN F PERNI T BTSN MES

shutdownSound STRING defaultAppShutdownSound

The sound to play when this application shuts down. (NOTE: This attribute is currently not
implemented.)

blockCursor BOOLEAN defaultAppBlockCursor

Indicates whether the block-cursor detection code should be used in this application. The block-
cursor detection code is used to track the location of the application cursor in text areas.

7.6 Actions

Actions are call-out points that are invoked when the UltraSonix off-screen model changes.
Arbitrary TCL code can be associated with actions, and will be invoked whenever the action is

evaluted.

This section describes the actions built in to UltraSonix, when they are called, and the arguments
that are passed to the TCL procedures associated with them.

BrailleProg

Invoked whenever the "prog” button on the braille keyboard is pressed.

BrailleHome

Invoked whenever the "home" button on the braille keyboard is pressed.

BrailleCursor

Invoked whenever a cursor button on the braille keyboard is pressed.

BrailleUpBounds

Invoked whenever the up key is pressed on the braille keyboard, and the new position would pass
beyond the top of the data buffered in the braille loadable module.

BrailleUp

Invoked whenever the up button is pressed on the braille keyboard.

BrailleDownBounds

Invoked whenever the down key is pressed on the braille keyboard, and the new position would
pass beyond the bottom of the data buffered in the braille loadable module.

BrailleDown

Invoked whenever the down button on the braille keyboard is pressed.

BrailleLeftBounds

4

Invoked whenever the left key is pressed on the braille keyboard, and the new position would pass
beyond the edge of the data buffered in the braille loadable module.

BrailleLeftJumpScroll

Invoked whenever the braille display jump scrolls left.

BrailleLeft

Invoked whenever the left button on the braille keyboard is pressed.

BrailleRightBounds

&

Lol & 21 J WY X" WYY

Invoked whenever the right key is pressed on the braille keyboard, and the new position would
pass beyond the edge of the data buffered in the braille loadable module.

BrailleRightJumpScroll

Invoked whenever the braille display jump scrolls right.

BrailleRight

Invoked whenever the right buttoﬁ on the braille keyboard is pressed.

ClientCreated client name, client ID
N
Invoked whenever a new client has been detected but is not yet ready. v
\
b
ClientDeletion client ID I
N
Invoked whenever a client is destroyed. i
!
GoTo obj ID N
b
Invoked throughout UltraSonix whenever the user's current position must be changed. i
k
)

ClientReady client ID

Invoked whenever a new client has become ready for use.

ClientShutdown client ID

Invoked whenever the client shutdown process is initiated.

StopSpeaking

Generated from an external keypad when the O key is pressed.

ReadThisChar

Generated from an external keypad when the 1 key is pressed.

DownPressed

Generated from an external keypad when the 2 key is pressed.

—

T ReadThisWord

Generated from an external keypad when the 3 key is pressed.

LeftPressed

Generated from an external keypad when the 4 key is pressed.

FivePressed

Generated from an external keypad when the 5 key is pressed.

RightPressed

Generated from an external keypad when the 6 key is pressed.

ReadThisSentence

Generated from an external keypad when the 7 or 9 key is pressed.

UpPressed

Generated from an external keypad when the 8 key is pressed.

bl 4 44 L Y X WA 7 77 & F7F]

ChangeTextMode

Generated from an external keypad when the . key is pressed.

SelCurrent ’

Generated from an external keypad when the enter key is pressed.

PopupReturn

Invoked whenever the a popup window is dismissed.

EnterNotify obj ID

Invoked whenever the pointer enters a new object.

ButtonPress obj ID, button state, client ID

Invoked whenever a button press is detected.

F—

ShellMapped obj ID, client ID

Invoked whenever a new top-level window is mapped. 1

MapNotify obj ID, client ID

Invoked whenever any non-shell object is mapped.

XtObjectCreation obj ID, parent ID, obj class

Invoked whenever any object is creatd.

XtObjectDestroyed obj ID 3
'
Invoked whenever any object is destroyed. .:
i
XtObjectChange old obj name, old obj ID, new obj ID IE
|

Invoked whenever the current location changes.

XtObjectUnmapped obj ID, client ID

Invoked whenever an object is unmapped.

Ay W

XtObjectRealized objID

Invoked whenever an object is realized.

XtObjectUnrealized obj ID

Invoked whenever an object is unrealized.

XtObjectManaged obj ID

Invoked whenever an object is managed.

XtObjectUnmanaged obj 1D

Invoked whenever an object is unmanaged.

E—— e . — I

ULTRASONIX DESIGN DOCUMENT

1.0 Introduction

2.0 Handling Input
2.1 Basic Concepts
2.2 Adding New FDInterest Subclasses

3.0 Interface Modeling

3.1 Fundamentals

3.2 The Application Model Manager
3.3 Representing Clients

3.4 Representing Widgets and Gadgets
3.5 Representing Resources

3.6 Miscellaneous

3.6.1 Graphics Contexts

3.6.2 Fonts

4.0 Information Retrieval

4.1 Introduction

4.2 The Remote Access Protocol
4.3 Rendezvous

4.4 Client-Side Support

4.5 UltraSonix Support

5.1 RAP Agent Library

5.2 RAP Listener Class

5.3 RAP Class

0 Text Modeling
1 Introduction
2 Text Modeling in UltraSonix
3 How UltraSonix Creates TextReps
4 TextRep Basics
5 The TextRep Programming Model
6 ProtoTextRep /
XmTextRep
Support Classes
1 TextData
2 TextAttr
3 TextRepDebug

7

8

8.

8.

8.

0 The ScreenReader

1 Introduction

2 Functional Overview
3 Implementation Overview
3.1 CursorRep

3.1.1 Terminology
3.1.2 Overview

3.2 ScreenReader
3.2.1 Terminology
3.2.2 Overview

3.3 Filters

4.
4.
4.
5.
5.
5.
5.
5.
5.
5.
5.
5.
5.
5.
5.
6.
6.
6.
6.
6.
6.
6.
6.
6.
6.
6.

1
1.
1.
2
2.
2.
3

7.0 Interpreted Rules kK

8.0 Configuration Subsystem

8.1 The Template Files

8.2 Defaults and General Configuration File

8.3 Declaring New Attributes with mercator.attrib

8.4 Adding New UltraSonix Configuration Variables.
8.5 Accessing Attributes Programmatically

8.6 Writing Templates to Files

8.7 Re-Sourcing of Template and Configuration Files

9.0 Device-Specific Code

9.1 Motivation
9.2 Loadable Base Classes
9.2.1 The Audio Generic API
.2.2 The Speech Generic AP1

.3 The Braille Generic API
Writing New Loadables

.1 Basic Concepts
.2 Writing a Loadable Module
.3 Compiling a Loadable Module
.4 Configuration

Existing Loadable Modules

1 Dectalk

.2 Check List
.3 Implementation Details

4 Server Options
DectalkX

.3 Implementation Details
.4 Server Options
TrueTalk

1
1
1
1
2
2
2.2 Check List
2
2
3
3

COOVWOOVOOWOLOVWOOOOVOOOOVWOOO0

2
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
4
4
4
4

.3.2 Check List

9.4.3.3 Implementation Details

9.4.3.4 Compatibility Issues

9.4.4 NetAudio

9.4.4.1 Using the NetAudio System with UltraSonix
9.4.4.2 Implementation Details

9.4.5 AudioFile

9.4.5.1 Using AudioFile with UltraSonix

9.4.5.2 Implementation Details

9.4.3.3 Caveats

9.4.6 Alva

9.4.7 Genovations

9.4.7.1 Using the Genovations Keypad with UltraSonix
9.4.7.2 Implementation Details

10.0 Miscellaneous Topics

10.1 Process Management

10.1.1 Introduction to Process Management
10.1.2 Using the Process Manager: Basic

.1 Using the Dectalk Speech Synthesizer with UltraSonix

.1 Using the Dectalk Express Speech Synthesizer with UltraSonix

.1 Using the Entropic TrueTalk Speech Synthesizer with UltraSonix

10.1.3 Using the Process Manager: Advanced
10.1.4 Process Manager Implementation

10.2 The Console

10.2.1 Using the UltraSonix Console

10.2.2 Starting a Console

10.2.3 Console Environment

10.2.4 Example

10.2.5 Implementation Details

11.0 Appendix: TCL Command Reference
11.1 TCL Interfaces to C++ Methods
11.1.1 Diagnostic Output
11.1.1.1 Displaying Error Messages
11.1.1.2 Getting and Setting Error Levels
2 Operations on Clients
2.1 Determining the Current Client
2.2 Moving Between Clients
.2.3 Client Names
3 Operations on Objects
3.1 Determining the Current Object
3.2 Converting Object Names
4 Binding Events and Actions
4.1 Associating TCL Procedures and Events
4.2 Actions
Using the Braille Terminal
1 Sending Text to the Braille Device
2 Jump Scroll Mode
3 Setting the Braille Translation Table
4 Querying Braille Device Capabilities
Console Operations
Connecting to Clients
Key and Button Events
1 Using Keyboard Identification Mode
2 Generating Keyboard Input to Applications
3 Generating Mouse Input to Applications
3.1 Button Events
3.2 Moving the Clrsor
Retrieving Properties of the Model
Parent/Child Relationships
Object Location and Geometry
Names and Other Object Attributes
Generating Non-Speech Audio Output

fd ek ok k) pnd k. k. . k. k. k. k. k. s pdh prtah . Yk

1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
11
1.
1

1 Shutting Down UltraSonix

l Accessing Resources
Speech Output

11 1 Producing Speech

Low-Level X Window Operations

1 Using Properties

2 Using Selections

3 Accessing Window Attributes

3 Window and Pointer Management
Using the ScreenReader

1.
1.
1.
1
1.
1.
1.
1.
1
1
1.
1.
1.
1
1
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1
1.
1.
1.
1.1.
1.
1.1
1.
AL
1.
1.
q.
1.
.1.15.1 Changing ScreenReader Parameters

5
5.
5.
S.
5.
6
7
8
8.
8.
8.
8.
8.
9
9.
9.
9.
1
1
1
1
1
1
1
1
1
1
1
1
1

1
2
3
0
1
2
3
3.
3.2 Querying Speech Device Capabilities
4
4.
4.
4.
4.
5
5.

- wwp

. e e v~ ow

.1.15.2 Using Cursors

.1.15.3 Using Filters

.1.15.4 Reading and Moving Through Text
.1.15.5 Miscellanous ScreenReader Functions
.1.16 Miscellaneous Text-Related Functions
.1.16.1 Determining the Location of Text
.1.16.2 Debugging the Text Model

11.1.17 Logging User Activities

11.1.18 Template and Configuration Management
11.1.18.1 Using Template Values from TCL
11.1.18.2 Writing New Template Files
11.1.18.3 Retriving Configuration Attributes
11.1.18.4 Loading Files

11.2 "Pure” TCL Commands

11.2.1 Audio

11.2.2 Interface Helpers

11.2.3 Navigation

11.2.4 Text Mode

11.2.5 Miscellanous

12.0 Appendix: RAP Protocol Specification

13.0 Appendix: Known Bugs

1.0 INTRODUCTION

This document contains details about the implementation of various aspects of UltraSonix. The
goal of this document is to provide enough information about key UltraSonix subsystems that
future developers will have a "head start” on understanding and maintaining the code.

Most of the sections of this document were originally written as "stand-alone" design documents
during the course of development. We have tried to keep the information here as up-to-date as
possible but, of course, the source code is the final arbiter of the implementation.

2.0 HANDLING INPUT

2.1 Basic Concepts

All input to UltraSonix is done through the FDInterest class. If you want to use a new input

stream (for example, a new device which provides input to the system), you create a new subclass

of FDInterest. The FDInterest base class tracks all of the instances of its subclasses, and

remember which file descriptors they are interested in (hence the name "FDInterest").

UltraSonix's central loop is a call to FDInterest::MainLoop(). This code blocks in poll(), waiting

for activity to occur on any of the descriptors it is looking at. When activitiy occurs (for example,

data is available for reading), MainLoop() determines the specific FDInterest subclass which has

expressed an interest in that descriptor, and calls the Handle Activity() method on it.

2.2 Adding New FDlInterest Subclasses

Each subclass of FDInterest has the following responsibilities:

1. Tell the FDInterest class which descriptors it will be responsible for.

In the constructor for the subclass of FDInterest, you should open any descriptors that you will be

responsible for (sockets, files, devices, etc.). You then need to tell the FDInterest base class about

these descriptors, so that it can add them to its poll set. You do this by first calling
AddFDInterest(fd);

to create an association between your instance and the descriptor, and then by calling
SetlOMask(fd, MASK);

to tell the FDInterest class what types of activity you will handle. Most of the time you are

interested when data is available for reading, so you can pass the symbol "ARead" as the MASK
parameter to Sei{OMask(). Look at FDInterest.h for other mask symbols.

Note that you can later change the types of activity you are interested in via other calls to
SetlOMask() (for example, to be notified whenever a descriptor is writable or has an exceptional
condition). You can also be "interested in" multiple descriptors, although no two FDInterest
subclasses can be interested in the same descriptor.

2. Implement a HandleActivity method to deal with data available on its descriptors.

Your subclass MUST implement a HandleActivity() method which will be automatically called
whenever any of the descriptors you have specified an interest in (via AddFDInterest()) have
activity on them that matches the activities you said you would handle (via SetlOMask()).

HandleActivity() is called with two arguments: the descriptor and the type of activity which has
been seen on it (for example, readability or writability). HandleActivity() should return a non-zero
value if some error occurs.

This is the function where the "smarts" of your FDInterest subclass reside. Only your class can
know how to interpret data from its file descriptor.

NOTE that even if you don't specify that you are interested in errors and exceptional conditions
(via a call to SetlOMask()), Handle Activity() will still be called whenever these special
conditions occur. .

3. Implement the "shutdown" protocol required to cleanly terminate an FDInterest subclass.

There are two cases in which an FDInterest subclass may wish to delete itself. In the first, the
subclass detects some exceptional condition which cannot allow it to continue (for example, if a
subclass represents a connection to another process, and the process dies, the subclass may wish
to be deleted). In the second, the user has requested that UltraSonix shut down completely and the
system will message each subclass to shut themselves down in an orderly manner.

Since other components in UltraSonix may be dependent on your subclass, it is important that you
follow the shutdown protocol outlined here. This protocol ensures that the shutdown of FDInterest
subclasses is properly ordered and that all references to the subclass are cleaned up.

If a client wishes to shut itself down, it simply calls RemoveFDInterest(fd) to tell the FDInterest
base class that it is no longer handling activity on the specified descriptor. Next, it calls
MarkForCleanup() to tell FDInterest that it is ready to be deleted. FDInterest will actually delete
the subclass at some point in the future, after all necessary housekeeping has been done.

When UltraSonix wishes to shut down an FDInterest subclass, it calls the Shutdown() method on
that subclass. All classes ferived from FDInterest should implement Shutdown() and perform any
class-specific shutdown activities here. Before returning, Shutdown() should call
MarkForCleanup() to ensure that the FDInterest class will actually be deleted.

3.0 INTERFACE MODELING
3.1 Introduction
UltraSonix keeps a model of the user's "desktop” environment as it runs: all of the applications

currently executing. This model is stored as an in-memory collection of objects, representing
applications, widgets and gadgets, and resources within widgets and gadgets.

This model can be queried to retrieve information about graphical interfaces. It is automatically
updated via the RAP protocol as applications change state.

3.2 Fundamentals

The three most important classes in the off-screen model, the AppModelManager, the Client, and
the XtObject, are all derived from class Storage. The Storage base class enforces an API for
mapping from events to actions.

All Storage-derived classes maintain an "Event/Action" dictionary. UltraSonix allows the
execution of arbitrary "actions" when certain events are received (this is how the system
implements keybindings). The association between events and actions may be established
globally, on a per-client basis, or a per-widget basis. Each subclass derived from Storage
implements a different "level" of these mappings.

Note that all UltraSonix interface modeling data structures store pointers to the actual data objects.
Thus, no copies are made (either in or out) when data is inserted or retrieved from the model.

Also note that both Clients and XtObjects have unique "names" (which are really strings) that are .
used to identify them. For XtObjects, these names have the form XtObjectXXX (where XXX is ‘
some unique number); for clients, these names have the form ClientXXX (again, where XXX is

some unique number). These names are used throughout the system to uniquely identify a given

object instance, and are visible through the TCL interfaces.

3.2 The Application Model Manager

The Application Model Manager (AMM) is the outermost "entry point” into the off-screen model.
When UltraSonix starts, it instantiates one global instance of an object of class Mercator, which
holds all global data that is needed by the system. The Mercator object creates and holds a pointer
to one AppModelManager instance, which stores the offscreen model. Thus, there is only one
instance of this object, representing the entire desktop environment.

The AMM stores the following data representations:

clientList The authoritative list of all client
applications running on the desktop.
currentClient A pointer to the current client (may
be NULL if there is no current
/ client).
clientNames A mapping of client names to client

instances. This data structure allows
the lookup of clients based on their
identifiers (names).

xtobjectNames A global mapping of XtObject names to
XtObject instances.

xtobjectWindows A global mapping of XtObject windows
to XtObject instances.

eventActions The global map from event types to

actions to be executed.

The AMM provides the "global" mappings that represent the user's universe. Thus, the AMM
maintains a list of all clients, and a way to retrieve specific clients given their names.

Likewise, it also maintains global mappings of XtObjects (representations of widgets and gadgets).

The "typical” way to access XtObjects is through the client that contains them, but often callers do
not know a priori the client containing a given object (usually because the caller only knows the

identifier or window of the object). Thus, the AMM maintains mappings that index XtObjects by
these attributes.

3.3 Representing Clients

Running applications are represented by Client instances. Client objects maintains all salient
attributes of a client application:

clientName The name of this client (as provided
by the application writer).

clientClass The class of this client (as provided
by the application writer).

id The server-supplied XID representing
this client.

uniqueName The string uniquely identifying this
application.

fontCache A cache of the fonts in use by this
client.

xtObjectObjectlds All of the XtObjects contained in this
application, indexed by object IDs.

currentLocation The current location within the
client, stored as a pointer to an
XtObject (or NULL if there is no
current location).

topWindows A list of all the "top-level”
XtObjects comprised by this
application.

eventActions The client-scope mapping of events to
actions.

ready A boolean value, indicating whether or

not the client is ready for
interaction.

Most of the data stored by clients is self-explanatory. The fontCache member maintains a
representation of the attributes of all fonts in use by this application. The topWindows member is a
“short-cut” data structure for maintaining information about top-level windows. The ready
member indicates whether a client has finished the RAP start-up phase (a new client instance is
marked as not ready until UltraSonix receives information about its widget hierarchy and
resources).

3.4 Representing Widgets and Gadgets

All widgets and gadgets are represented as instances of class XtObject. XtObjects store all
information relevant to a particular widget. The data contained in XtObjects includes:

id The Xt-internal identifier for this
widget (guaranteed to be unique within
a given client).

myName The name for this widget, as supplied
by the application writer.
myClass The class for this widget, as supplied

by the application writer.

L —

longName The Xrm-style (dot notation) name of
this widget, suitable for use in
.Xdefault files or in object templates.

uniqueName The UltraSonix-internal string,
uniquely identifying this instance.

xtObjectldent A numeric representation of the
uniqueName string.

parent A pointer to the XtObject that is the
parent of this object (may be NULL if
this object has no parent).

window The X Window ID of this object's
window.

X, ¥ The location of this object, relative

width, height

to its parent.
The size of this object in pixels.

mapped Boolean indicating map status.

managed Boolean indicating managed status.

borderWidth Width of the widget border, in pixels.

grabslnstalled A book-keeping boolean, used to
indicate whether or not we've already
installed our needed key grabs on this
object.

resources A pointer to a ResourceCache instance,
which stores all of the resources
associated with this XtObject.

eventActions The per-widget mapping of events to
actions.

classDictionary The per-widget class mapping of events
to actions.

sreader A pointer to the screen reader
instance associated with this XtObject
(if there is one).

textrep A pointer to the text rep instance
associated with this XtObject (if
there is one).

client The client containing this object.

children A list of all children of this object.

popReturn A bookkeeping variable, popReturn

holds a pointer to the object
previously containing focus before a

popup appeared.

Most of these members are self-explanatory, but a few require a bit more exposition. The window
member contains the 32-bit window ID of the widget's window. If the widget is not yet realized
(that is, it has no window associated with it), the value will be RapUnrealized (#defined to be 0).
If the widget is a gadget (windowless widget), the value will be RapGadget (#defined to be 2).

The resources member is described more fully below, under "Representing Resources."

The classDictionary member is a dictionary of pointers to event/action dictionaries. The key to this
dictionary is a string, which represents the class names of widgets. The resulting value is a set of
event-to-action bindings for widgets of this class. This dictionary, which is static (shared by all
XtObject instances), is used to allow the association of events to actions on a per-widget class
basis (as opposed to a per-widget instance basis).

a5

If a given object supports text mode (as indicated by the "allowTextMode" attribute in its template),
then a TextRep instance will be created in the textrep member. The first time a user actually enters
text mode in this XtObject, a screenreader instance will be created (and stored) in the sreader
member to provide an interface to the textrep.

The popReturn member is used to essentially create a popup return stack within the XtObject
instances themselves. When a popup appears, UltraSonix warps the user to the popup, and stores
the old current location in the popReturn member of the popup. When the popup disappears, the
current location is set to the value of its popReturn. This scheme works for arbitrary depths of

popups.

3.5 Representing Resources

The "outer” representation of resources is a class called ResourceCache, defined in Resource.h.
An instance of a ResourceCache will be associated with every XtObject and used to store the
resources contained by that object.

ResourceCache provides an interface to retrieving and setting resource values. The implementation
of ResourceCache is completely hidden (and fairly complex). Internally, ResourceCache maintains
dictionaries of Resource instances. Resource instances each represent one particular resource: its
name, class, type, and value. Values are represented by the Resource Value type, which supports
arbitrary-sized data representations.

All type-specific information needed to represent a given resource value is maintained by an object
called the ResourceTypeManager. The ResourceTypeManager provides a mapping between
resource types ("XmString", for example) and information about the size of such representations,
how to copy and print resources of such type, and so on.

At startup time, UltraSonix "registers" a handful of common types with the
ResourceTypeManager. Registration creates an association between the resource type name and
information about the size of the type and functions needed to print, store, copy, and free objects
of the type.

UltraSonix ignores resources with types that have not been registered with the
ResourceTypeManager, since it cannot know how to interpret the binary value data returned by
RAP unless the type has been registered.

Registration for new types should be added to the function InitializeResourceTypeManager() in
Resource.cc.

See the file Resource.cc for more information regarding how resources are stored and managed.
CAVEAT: The current resource code is specific to 32-bit machines. The code for decoding
resource values is word-size dependent, and will have to be fixed to run on non-32-bit machines.
3.6 Miscellaneous

In addition to the high-level (Xt-based) representations of X interfaces, there are a number classes

used to represent lower-level (X protocol-based) constructs. This section discusses two of those,
used to store Graphics Contexts and Fonts.

3.6.1 Graphics Contexts

Graphics Contexts, or GCs, are structures that hold information used to parameterize a drawing
operation. Examples of information contained in GCs include line width, color information, and
font information. GCs are used in all X protocol requests involving on-screen rendering.

UltraSonix stores GC information so that it can determine the font being used to render text (for
ProtoTextRep text modeling), and to capture attribute information about drawn text.

A class called GCValueDict is instantiated in each RAP object to maintain a mapping from GC IDs
(32-bit numeric values) to instances of class GCValue. GCValue is the UltraSonix-internal
representation of a Graphics Context.

Each GCValue maintains a Graphics Context structure, and supports comparison operations (for
determining if the color of two adjacent pieces of text differ, for example). GCValues are primarily
used by the ProtoTextRep class.

3.6.2 Fonts

Fonts information is stored in objects of class FontCache. FontCache maintains a dictionary of
font attributes (represented as XFontStructs), indexed by X Font identifiers (which are 32-bit
values).

Each client keeps its own FontCache, since the identifiers assigned to each font are particular to a
given client (thus, even if two clients open the same font, the IDs they use to refer to these fonts
will be different).

The FontCache class provides methods for adding, removing, and retrieving font attribute
information from the cache. There are also a number of "short-cut" functions for determining
bounding regions around strings of text, given a font ID that the text is rendered in. These
methods are used extensively by the ProtoTextRep class.

Note that it is impossible to determine actual font names from font IDs, only font attributes such as

size information. ,

4.0 INFORMATION RETRIEVAL

4.1 Introduction

UltraSonix retrieves information about graphical interfaces from running applications.
Applications that run under UltraSonix must be modified to use different versions of the MIT X

Window System libraries, that understand the Remove Access Protocol (RAP). This protocol is
used to communicate between applications and UltraSonix.

4.2 The Remote Access Protocol

The Remote Access Protocol (RAP) is a binary protocol that is exchanged between applications
(called "clients") and external programs, such as screen readers and automated testing tools (called
"agents").

The protocol contains three different types of messages:

Requests Travel from agent to client, and must be
answered with a Reply.

Reply Travel from client to agent, in response to a
Request message.

Notify Travel from client to agent, and are
unsolicited.

Requests and replies are used when the agent needs to know some particular piece of information
about a client: for example, the position of a specific widget on the screen. Notifies are generated
asynchronously by clients whenever their state changes (when widgets are created, for example).

The specifics of the protocol are described in Appendix A, "RAP Protocol Specification," and are
also available on the World Wide Web, at the URL:

http://www.cc.gatech.edu/gvu/multimedia/x-agent/index.html

The "X-Agent" mailing list run by the X Consortium is used for discussion of RAP and RAP-
releated ideas.

The current RAP implementation is available from Georgia Tech at:
ftp://multimedia.cc.gatech.edu/pub/rap-sample.tar.Z

The protocol uses ICE (Inter-Client Exchange) as its transport, and expects to work with the
HooksObject present in the R6 1ibXt implementation, and the XESetBeforeFlush client-side
extension in the R6 1ibX11 implementation.

4.3 Rendezvous

(NOTE: This section describes the rendezvous mechanism currently used by UltraSonix. A new
rendezvous mechanism is being drafted by the X Consortium as an extension to the Inter-Client
Communication Conventions Manual (ICCCM).)

When UltraSonix starts, if creates an unmapped window as a "holder" for a property. This
property, called "IceNetworkIds," contains the ICE network address on which UltraSonix will
listen for incoming client connections. The value of this property is a comma-separated list of ICE
network IDs (see the ICE library documentation for details on how this list is created). At this
point, UltraSonix begins listening on the ICE network IDs it has published, indicating that it is
now willing to accept connections from clients.

Next, UltraSonix solicits SubstructureNotify events from the root window. UltraSonix detects the
presence of a new application by looking for its top-level window to be mapped.

Once a new child of the root window is mapped, UltraSonix calls XmuClientWindow() to
determine the "application” window (which will be a child of the window manager frame mapped
directly as a child of the root window). Once this window has been identified, UltraSonix
generates a ClientMessage event to the application. The format of this ClientMessage is as follows:

window The application's window.
type ClientMessage
message_type Atom("ExternalAgent")

format 32
data.l[0] Atom("RAP")
data.lf1] Atom("IceNetworklIds™)

data.l[2] The agent's window
data.l[3] 0
data.l[4] 0

The first longword of data contains the atomized name of the protocol the agent wishes to speak (in
this case, "RAP"). The second longword contains the atomized name of the property on the
agent's window containing the agent's ICE listener address, and the third longword contains the
window ID of the agent window on which this property exists. The remaining data areas are not
used.

When the client receives this message, it should retrieve the value of the property specified on the
agent's window, and open an ICE connection to the agent at the address specified there.

4.4 Client-Side Support

Clients must be extended to support RAP and RAP rendezvous. The specific infrastructure
requirements for clients are:

They must be based on Xt and X11.

Their Xt must support the HooksObject (first present in X11R6).

Their X1ib must support the XESetBeforeFlush client-side extension.

They must be linked with the RAP client-side protocol library.

They must have an event handler installed on their application shells to respond to the
ClientMessage events used for rendezvous.

* (OPTIONAL) XGClList support.

UltraSonix ships with a version of the MIT X11RS libraries that has been extended with the R6
implementation features (HooksObject and BeforeFlush extension). These libraries also have a
dependency on libRAPcInt (the RAP client-side protocol library), so this library will be loaded

automatically whenever 1ibXt or 1ibX11 is used. We have extended the ShellRealize method in
Shell.c to install the ClientMessage event handler on application shells.

When the client receives the rendezvous message, it installs various callback procedures into the
HooksObject callback list, and a flush procedure into XESetBeforeFlush(), along with several
other routines. These routines are responsible for generating the asynchronous Notify messages to
the agent. The client also retrieves the agent's window property and establishes an ICE connection
to it.

At this point the client is fully connect and will respond to any RAP messages sent to it, and will
generate RAP Notifies.

The optional XGCList support mentioned above is a client-side extension that we have developed
to maintain a client-side mapping from GC IDs to GC structures. If this extension is enari<d, RAP
agents will be able to ask clients for the graphics context information corresponding to GC IDs.

4.5 UltraSonix Support

Support for the RAP protocol in UltraSonix is divided into three components: A low-level
protocol library, a RAP Listener class (responsible for responding to new RAP connections), and a
RAP class (responsible for dealing with single RAP clients).

4.5.1 RAP Agent Library

The RAP Agent library, libRAPagnt, is a low-level library designed to encapsulate the RAP
protocol and hide it behind an easy-to-use API. RAP Agent library APIs allow callers to generate
RAP messages to a client and, when messages are received, break their contents out into structures
for easy processing.

UltraSonix links against this library for protocol processing.

4.5.2 RAP Listener Class

The RAPListener class is responsible for listening for incoming RAP connection requests from
clients. There is one instance of RAPListener in all of UltraSonix.

Whenever UltraSonix detects a newly-mapped window, it calls the InitiateConnection() method on
RAPListener. RAPListener begins the rendezvous protocol (issuing client message events, etc.)
and waits on the client to respond by connecting to the listener address.

Once a client has connected, RAPListener begins the ICE protocol setup and negotiation phase. At
this point, the client and the agent are only "partially" connected: a communications channel is
established but they have not agreed on protocol versions, etc.

Once the negotiation process has completed, RAPListener accepts the connection and creates a new
instance of the RAP class to deal with the protocol needs of this one client.

4.5.3 RAP Class

The RAP class is responsible for communicating with one particular client. Thus, there is a
separate RAP instance fog each client currently connected to UltraSonix.

RAP instances are created by RAPListener as new connections come in from clients. When a RAP
object is first created, it ensures that it is completely connected to its client, and creates a new Client
instance in the application model manager. At this point, the RAP object is responsible for all
communication with this particular client.

Once connection is fully established, UltraSonix will (via the AppModelMgr) generate a series of
initial messages to the client. Currently, these messages include:

GetGCValuesRequest Download all GCs in use by the client.
HelloRequest Confirm application toplevel window
I

FullQueryTreeRequest Download the application's widget
hierarchy and resources.

SelectEventRequest Tell the applications which X events
we wish to be forwarded to us.

SelectRequestRequest Tell the applications which X requests
we wish to be forwarded to us.

The events UltraSonix solicits from applications include:

KeyPress Used for echoing user input.

ButtonPress Used for echoing user input.

EnterNotify Optional generation of focus change
feedback.

MapNotify Ensure that the model is consistent
with respect to maps/unmaps.

UnmapNotify Ensure that the model is consistent

with respect to maps/unmaps.

The requests UltraSonix solicits from applications include:

X_CreateGC All of the GC, ImageText, PolyText,
X_ChangeGC CopyArea, ClearArea, and FillRectangle
X_CopyGC requests are used by ProtoTextRep to
X_FreeGC keep its mode] of application text
X_ImageText16 areas up-to-date.

X_PolyText16

X_ImageText8

X_PolyText8

X_ClearArea

X_CopyArea

X_PolyFillRectangle

X_ReparentWindow Ensure that the model remains
consistent when windows are
reparented.

The RAP object is a subclass of FDInterest, and as such has a HandleActivity() method on it for
dealing with messages (either Replies or Notifies) received from the client. The HandleActivity()
method on the RAP object is essentially where the "brains" about how to interpret the RAP
protocol live. The code here must be able to handle and make sense of any RAP messages
generated by the client.

The RAP object also has methods on it for generating requests to the client.

The RAP object flags itself for deletion (via the FDInterest mechanisms) and shuts itself down
whenever the ICE connection to its client is severed.

5.0 TEXT MODELING

5.1 Introduction

One of the most important tasks of any screenreader is capturing and modeling the textual
information present on the computer screen. In many regards, capturing and presenting textual
information accurately is more difficult than capturing and presenting the graphical controls of a
computer interface. This difficulty is due to the fact that the graphical controls in an interface
typically have a one-to-one correspondance with the programming constructs used to create the
interface (widgets correspond to on-screen push buttons, for instance).

In comparison, in most toolkits for graphical applications only rudimentary support is available for
creating rich textual presentations. Typically the programmer is left to build the facilities for
"beyond basic" text display by hand.

Thus, it is left to the screen reader to attempt to detect whether text is bein g rendered in two-column
format, or whether wide spaces between lines represent blank lines or simple double-spacing.

5.2 Text Modeling in UltraSonix

In UltraSonix, text modeling is performed by the TextRep (for "text representation” class
hierarchy. A base class, called TextRep, provides an API for retrieving textual information from
the model. TextRep itself is an "abstract base class" which can never be instantiated directly.
Instead, one of its subclasses is always instantiated whenever a model for text is required.

There are two TextRep subclasses provided by UltraSonix. The first is called ProtoTextRep.
ProtoTextRep is a TextRep specialized for capturing information from the X protocol stream.
ProtoTextReps are used as a "last chance" mechanism for capturing text being drawn to a window.

The second TextRep subclass is called XmTextRep. XmTextRep is specialized for representing
text within a Motif XmText widget (which is perhaps the most common widget for text display in a
Motif or CDE desktop environment). The Motif text widget provides mechanisms for retrieving
text which are more robust and more powerful than simple X protocol monitoring; XmTextRep is
used whenever a TextRep is needed for a Motif text widget; ProtoTextReps are used in other cases.

5.3 How UltraSonix Creates TextReps

Text may be drawn to any widget in a graphical application: push buttons, labels, multi-line text
widgets, single-line text fields, and so on. UltraSonix will only create a TextRep for widgets for
which the "allowTextMode" attribute is set to TRUE (this attribute may be either set for a particular
widget via an object template or, more commonly, for an entire class of widgets via a class
template).

Note that UltraSonix "text mode" is only available for objects which have a TextRep associated
with them. The creation and maintenance of TextReps does add overhead to the system at run-time
however. They should only be created for objects for which the user may have a need for rich
textual interaction and screen-reader functionality.

As the UltraSonix off-screen model is being updated via RAP messages which indicate the creation
of widgets in the application, UltraSonix checks the name and class of the widget to see if the user
has indicated that the object should support text mode. If there is such an indication, UltraSonix
creates the appropriate TextRep subclass (XmTextReps for XmText widgets, and ProtoTextReps
for all other widget classes).

NOTE: In the future we may support the ability to specifically indicate via template attributes
which TextRep subclass should be created for particular objects.
5.4 TextRep Basics

The TextRep classes provide a row-column oriented model of text. Text is stored in lines
consisting of a number of characters. Some lines may be blank.

Segments of text within a TextRep are represented by TextData objects. TextData objects store a
string of text, the attributes associated with the characters in that string, and the length of the string.
Attributes are stored in a class called TextAttr. See the section "Support Classes" below for more
details.

NOTE: current versions of the TextData objects do not support "wide" (16-bit) characters; only 8-
bit.

5.5 The TextRep Programming Model

The TextRep classes provide only a storage model for the textual data which is *currently* present :
within a window on the display. TextReps provide no user-oriented output abstractions (such as i
filtering or "read by line" capabilities). The user interface to the data stored in a TextRep is created

by a ScreenReader instance which provides functions for the tokenization, retrieval, filtering, and

presentation of the text stored in a TextRep.

Note that separating the storage of text (in the TextRep class) from the presentation of the text (via
the ScreenReader class) allows us to keep the interface code (and in fact, the rest of the UltraSonix
system) the same, even if new TextRep classes are available in the future. New subclasses of
TextRep will support the common TextRep API and will thus "fit in" with the rest of the system
without modification.

The basic TextRep programming model only provides functions for text retrieval from the model.
This is because the facilities for inputting text into the TextRep will vary from subclass to subclass
(for instance, ProtoTextReps fill their models via protocol monitoring; XmTextReps fill their
models via tracking resource updates).

The basic text retrieval functions are:

TextData *GetData() const
TextData GetLine(int linenum) const
TextData GetSegment(int linenum, int start, int size) const

All three APIs return TextData objects. The first returns all of the data in a particular text object as
an array of TextData instances. (The length of this array may be determined via the Rows()
method on the TextRep). ,The second function returns all of the text in a particular line (the line
numbering starts at zero). The third returns a segment of text beginning at the specified line
number and character within that line, and extends for 'size' characters (the actual number of
characters returned may be less, if you ask for more text than is available in the TextRep).

Other APIs are available to convert from the character coordinate system to pixel coordinates, and
for retrieving the position of the application's cursor (when supported):

virtual int GetPixelCoords(int line, int pos, int& x, int& y);
virtual void GetAppCursor(int& row, int& col);

3.6 ProtoTextRep

The ProtoTextRep is a subclass of TextRep which maintains its model of text by monitoring the
low-level X protocol traffic for rendering text on the screen. The following are the text-related
requests in the X protocol which are monitored by ProtoTextReps:

ImageText8
ImageText16
PolyText8
PolyText16
ClearArea
CopyArea

When a ProtoTextRep is created for a particular object, it retrieves the RAP obiject for the client
application that the object is a part of. If the new ProtoTextRep is the first ProtoTextRep in this
particular client, then it calls the RAP object to solicit these text-related requests from the client
application. They are not solicited by default since they add significantly to the overhead of the
system; they are only requested when the first ProtoTextRep is created for a given application.
Once solicited, all text-related requests generated by the application will be sent to UltraSonix--
even ones for windows which do not have TextReps associated with them (push buttons for
instance).

Note that requests related to GCs (Graphics Contexts) are used primarily for ProtoTextReps, but
they are solicited whenever UltraSonix first connects to an application. GC-related traffic is
generally low, and this information could be used in the future for tasks unrelated to ProtoTextRep
modeling.

Internally, ProtoTextReps store text as an array of pointers to Line instances. Each Line maintains
a TextData instance which represents the text in that line on the screen, the baseline (lower left
corner) X and Y position where the text starts, and the upper Y coordinate which represents the
upper edge of the bounding box around the line.

Whenever new text is drawn, the baseline Y position is determined and the array of Lines is
scanned. If the baseline Y position is equal to an existing line, then the new data is considered an
update of the existing line and the new data is merged in.

/
Otherwise, the baseline Y and upper Y positions of existing lines are checked. The ProtoTextRep
does not support overlapping text, so if the new text is being drawn "over the top” of existing text,
an error is reported. Otherwise, a new Line instance is created and inserted into the model.

One of the most difficult tasks of modeling text via protocol monitoring is determination of blank
lines. In an effort to conserve network bandwidth, some applications will not transmit a "draw
blanks" message to render nothing on the screen. This causes difficulty in determining whether a
given region on the screen is a blank line, or whether lines are simply widely spaces.

For example, consider two lines of text, each with a height of 8 pixels. Suppose these lines are
separated by 40 pixels of "blank space.” The ProtoTextRep must decide whether these 40 pixels
represent empty lines that the user would be able to navigate to (and if so how many), or whether
this space represents non-navigable interline spacing.

The algorithm for blank line determination used by the ProtoTextRep is this: the ProtoTextRep
maintains information about the current minimum interline spacing in use in the model. Each time
a new line is inserted into the model, the minimum interline spacing in effect is recalculated. Each
time the minimum interline spacing decreases, the text model is recalculated and blank lines are

inserted into the model between existing lines. The model interprets the decrease in minimum
interline spacing (that is, text is being drawn between two previously existing lines) as an
indication that its current supposition about interline spacing was wrong. It "renumbers" the lines
based on the new information, inserting blank lines as necessary.

Note that there are a number of limitations with the algorithms used by ProtoTextRep:

* Only fixed-width fonts are supported. If font width changes
were supported, reliable determination of column information
in the presence of blanks would be very difficult.

* Font changes are supported as long as widths never change.

* Overlapping text is not supported.

* Only the text currently visible on the screen is reliably
modeled.

The ProtoTextRep class models the location of the application cursor by tracking the
X_PolyFillRectangle request to look for "block cursor” drawing in the text area.

5.7 XmTextRep
(NOTE: XmTextRep is not implemented.)

5.8 Support Classes

Several classes are used by TextReps which are exposed to users of the class. The most important
of these is TextData, which encapsulates a segment of text and the attributes of that text.

Textual attributes (color, font, etc.) are represented by TextAttr objects. These are stored within
TextData instances and are accessible through them.

Visual debugging of TextReps is supported via the TextRepDebug class. Associating an instance
of TextRepDebug with any TextRep provides a visual indication of what the TextRep instance
"believes" is currently in its model.

/

5.8.1 TextData

The TextData class provides a representation for a sized segment of textual data. Methods provide
access to the character string stored in the instance, the attributes of those characters, and the size
of the segment. Currently only 8-bit characters are supported by TextData.

Since copying and exchanging text segments is performed very often, the TextData class has been
implemented to be as efficient as possible. The class is implemented as a wrapper around a pointer
to a TextDataRep instance, which is hidden from users of TextDatas. TextDataRep maintains the
actual data of the segment and a reference count. Copying and assigning TextDatas results in a
simple pointer assignment and an update of the representation's reference count.

TextDatas implement copy-on-write semantics. Whenever the data in the class is accessed for
writing, a copy of the representation is made to prevent other TextDatas which share the
representation from having their data upated without their knowledge.

The basic APIs supported by TextData include the following:

/)

// Provide non-const (writable) access to the character data

// within a TextRep. These are expensive because they cause a
// copy of the text data to be performed to ensure safety.

1/

operator char*()

char *Chars();

"

// Provide const (read-only) access to the character data

// within a TextRep. These are very inexpensive.

V/

operator const char*() const;

const char *Chars() const;

1/

// Return the TextAtr which corresponds to the given character
// position. The first version is non-const (expensive),

// while the second is const (cheap). Both of these methods
// will raise an xmsg exception if the position is out of

// bounds.

I

TextAttr& Attr(int position);

const TextAttr& Attr(int position) const;

o

// Return the length of the segment, in characters.

i

int Length() const;

For convenience, TextData instances may be freely copyied, assigned, and concatenated (via
operator+=). See the code for the full set of methods available on TextData objects.

The character arrays returned from TextData instances are guaranteed to be NULL-terminated.

5.8.2 TextAttr

14

The TextAttr class represents the attributes of a given segment of text. Currently TextAttrs are
simply wrappers around the GCValue class which encapsulated X Graphics Contexts.

No special methods are currently available for determining or comparing TextAttrs. Instead, to

perform comparisons, you must extract the GCValue from the TextAttr and use the standard X GC
operations.

5.8.3 TextRepDebug

TextRepDebug provides a visual debugging tool for TextReps. Code which uses TextReps should
never see TextRepDebug instances directly. Instead, to enable debugging of a particular TextRep,
the user calls TextRep::Debug(TRUE) to set the debugging state for that instance to TRUE.

Calling TextRep::Debug(FALSE) disables debugging; debug state can be determined via calling
TextRep::Debug().

When debugging is set to TRUE, the TextRep creates an instance of TextRepDebug and retains a
pointer to it intemally. There is only one TextRepDebug class, regardless of the type of TextRep
which created it; TextRep subclasses interact with TextRepDebug via a well-defined API which
allows TextRepDebug to visually display TextRep contents for any class of TextRep.

When a TextRepDebug is instantiated it will create a new window on the display which will be
kept "in sync” with the TextRep contents. No user intervention is required.

6.0 THE SCREENREADER
6.1 Introduction

The ScreenReader object provides tokenization functionality for the textual data whose onscreen
representation is stored by the TextRep object. Each ScreenReader object (one may exist for each
area of text on the screen) contains a pointer to a TextRep object, which provides an interface to the
raw textual data displayed onscreen at a given snapshot of time.

Each ScreenReader maintains two cursor abstractions (this may be possibly expandable in the
future) as CursorRep objects. These objects are coupled to the TextRep object stored in the
ScreenReader object. The CursorRep object provides a notion of row and column access to the
raw data obtained from the TextRep, as well as absolute and relative positioning, and bounds-
checking and error-raising via exceptions. Each cursor may be queried and manipulated
independently, however, access to the cursors from outside the ScreenReader object is controlled
by the variable operation_mode, which can be set The CursorRep object serves as the interface
between the ScreenReader and TextRep objects. Using the CursorRep objects, the ScreenReader
may perform query operations on the text relative to the current cursor positions. Query operations
include next/previous word, line, etc.

The ScreenReader also contains "filter(s)", which modify the presentation of text parsed by the
ScreenReader object by either altering the information presented directly, or by altering the manner
of presentation on a particular output device or devices.

6.2 Functional Overview
The ScreenReader object'provides the following functions:

* Read by character, word, line, sentence, or paragraph
* Move by character, word, line, sentence, or paragraph
* Synchronize cursors

* Perform text processing

Each function is briefly described below:

Move: the appropriate lexical unit (character, word, line, sentence, or paragraph) is read from the
current cursor position. The cursor is updated to point to an appropriate location following the
read. For example, reading a sentence would cause the cursor to be updated to the end of the
sentence after it has been read.

Read: similar to Move, as above, except that the cursor position is not altered.

Synchronize cursors: set the location of one cursor to be the same as the other.

Perform text processing: each ScreenReader object has an associated filter object which performs
default processing on the text item returned before it is returned to the output device.

6.3 Implementation Overview
6.3.1 CursorRep

The CursorRep object is serves as the interface between the TextRep and ScreenReader objects. It
provides a row/column interface to the text block represented in the TextRep, as well as
increment/decrement operations to scan forward and backward, treating the text block as a stream.
The text data in the TextRep associated with the cursor can be accessed from the current position
(sequential access), or randomly by specifying a row/column position (random access). The
CursorRep also contains a copy of the text data for the current line of data,

6.3.1.1 Terminology

Text block: The raw data stream presented by the TextRep object. Each line of screen output is
concatenated into a single string, with no delimiter characters between lines (lines are therefore
referenced positionally, based on a calculated offset from the start of the text area, rather than
semantically).

Text offset: Since each line of displayed text is assumed to be of constant length, the offset from
the start of the text block for a given character may be calculated using the formula (row x
line_length) + column. An offset as well as a row/column representation of the cursor position is
stored in the CursorRep object.

Text bound: The upper bound on the offset representation value for the CursorRep with its current
snapshot of the TextRep object, or (line_length * number_of_lines)-1. The lower bound for the
offset representation is always 0. The bound values are inclusive (i.e. they themselves are legal,
but values below 0 or above the upper text bound are not). Attempts to access positions outside
the text bound will result in a thrown exception.

6.3.1.2 Overview

All of the functionality of the ScreenReader object is implemented via the CursorRep object. The
CursorRep acts as a scanning head which may advance forward or backward in the text block.
The delimiter string (see below) determines how the ScreenReader determines where word,
sentence, and paragraph boundaries occur while it reads data from the TextRep via the CursorRep.

Typically, ScreenReader functions will be invoked by keystrokes by the user, which are bound to
TCL functions defined in text.tcl. These functions then invoke the sreader() function in Interp.cc,
which calls methods of the ScreenReader class.

6.3.2 ScreenReader

6.3.2.1 Terminology

Lexical unit: The lexical units which are parsed by the ScreenReader object include characters,
words, lines, sentences and paragraphs.

Cursor: Each ScreenReader object contains two cursors -an edit cursor and a review cursor. The
various navigation and fetch functions work with either cursor.

Delimiter string: Characters in the delimiter string define the set of characters which serve as
delimiters for the text returned by the TextRep object. Due to implementation, characters which are
used frequently as delimiter characters should be placed at the front of this string to improve
performance.

Forward/backward: The forward direction corresponds to the direction in which text is normally
read, that is, left to right across the screen. Thus, functions which retrieve the "next" lexical unit
read "forward", while functions to retrieve the "previous” lexical unit read "backward".

6.3.2.2 Overview

The ScreenReader allows the user to navigate via the cursors and fetch current, next, and previous
lexical units from the current cursor position. The methods which provide this functionality are
called in a hierarchical fashion. That is, the function to parse characters and words is based on the
CursorRep object, the function to parse sentence-level constructs is based on the function to parse
words, and the function to parse paragraphs is based upon the function to parse sentences. The
tokenization algorithm for each lexical unit is described below:

Word: Depending on the desired direction of the scan (current lexical unit requested is treated as a
forward scan), the cursor moves backward to the start of the current word or forward to the end of
the current word. The scan then proceeds to move forward to the end of the word or backward to
the start of the word, terminating the search when the text bound or a delimiting character is
reached. The cursor is updated to point to the final character in the word for a forward scan, the
first character in the word for a backward scan.

Sentence: Words are read backwards from the current cursor position until a word ending in a
terminal character is found; this word is discarded as being part of the previous sentence to the
current one. Next, words are read forward from the current cursor position until a word ending in
a terminal character is found, however, this word is retained, since it is part of the current
sentence. The words read by this routine are stored by the procedure until the complete sentence is
found, and the results of the individual searches are concatenated together. The cursor is updated
to point to a character in the last word in the sentence for a forward scan, the first word in the sen-
tence for a backward scan.

Paragraph: Sentences are read backwards from the current cursor position until the word
immediately preceding the first word of the current sentence differs in its row position from the
current sentence by at least two lines -this indicates the presence of a blank line between the
previous sentence and this one. Similarly, sentences are read forward from the current cursor
position until the next word past the end of the sentence differs by at least two lines. The sentences
read by this routine are stored by the procedure until the complete paragraph is found, and the
results of the individual searches are concatenated together. The cursor is updated to point to a
character in the last word of the last sentence of the paragraph for a forward scan, the first word of
the first sentence of the paragraph for a backward scan.

Data returned to the ScreenReader is encapsulated in the CursorRepData structure, which appears
as follows:

class CursorRepData {
int startx, starty, endx, endy;
TextData *tdata;

}

The start and end parameters are intended to store the row/column position of the start and end
positions for the data stored in this block (currently, this is unimplemented). The TextData
structure is defined in TextRep.cc and contains both character information as well as the text
attribute information for the data returned from the TextRep.

6.3.3 Filters

Filters are read via the parsing and lexing routines in filter.y and filter.l, which are converted into
the files filterparser.c and filterlexer.c using sed. These routines initialize the data structures which
are used to store the actions to be performed by the filters.

A filter consists of a TextFilter object, which is defined as follows:

class TextFilter {
[...]
char *name;
int active;
FilterEntryPtr *commands;
int num_commands, max_commands;

}

class FilterEntry {
[...]
mRegexp ;
int action, action_arg;
char *arg;
} *FilterEntryPtr;

Hence, each TextFilter is a named structure of num_commands FilterEntrys. If it is active, it will
be applied to data returned by the ScreenReader which uses the filter with this name.

Each FilterEntry describes a single action to be performed by the filter. The mRegexp member
describes a regular expression which will be pattern matched against the data passed into the filter.
The action, action_arg, and arg fields describe possible actions to take when this regular xpression
matches successfully. Currently, only the arg field is significant, and represents the character
string which should be used to substitute into the data string when a pattern match occurs.
However, the action code may be used to define a set of actions which may occur instead (.i.e.
switch(action) {}), using the action_arg and character as arguments to whatever functions are
desired. For example, the current parser for the filter contains rules for operations, such as
LANGUAGE, PITCH, RATE, VOLUME, or VOICE (these operations are unimplemented). A
separate action code may be defined for each operation, which can then be coded in
TextFilter::Filter.

7.0 INTERPRETED RULES

8.0 CONFIGURATION SUBSYSTEM

UltraSonix uses a fairly complex configuration subsystem to allow users and administrators to
change the behavior of the system. There are two primary components of this system: the
configuration mechanisms and the template mechanisms. The configuration mechanisms are used

to control overall system parameters; the template mechanisms allow users to specify behavior on a
per-widget, per-class, or per-application basis.

This section describes the internals of the configuration and template subsystems.

8.1 The Template Files

Template files are text files that contain attribute information for different objects.

Template files are usually denoted by the .tmpl extension in their name. A template file contains
one or more template definitions, although it is customary to only have one definition per file and
to have the filename correspond to the definition name.

The following is an example of a complete template file with one definition:
(from Athena/Command.tmpl)

classTemplate Command {

navigable = TRUE

shell =FALSE

sound = "/net/hc22/selbie/dink.au”

unsafeResources = { "sensitive", "mappedWhenManaged" }
volume =90

muffle = [PositionMuffle]

sensitive = [SensitiveProc]

mappedWhenManaged = [MapWhenMgdProc]
speakOnEnter = [Athenal.abelSpeaker]
speakOnlInfo = [AthenalnfoSpeaker]

}

The word "classTemplate” identifies the type of template that is being defined. "Command” is the
class of the object whose attributes are listed. Attribute names are listed in the left hand column
between the braces, and attribute values can be one of 4 data types - boolean, integer, string, or
stringlist.

In this example, the navigable and shell attributes are both boolean attributes, thus their values are
defined on the right handside of the assignment statement to be either TRUE or FALSE.

Sound is an attribute of type string, therefore it's value is enclosed withing double quotes (") to
identify it as such.

Volume is an attribute of type integer. It's value can be any number between -(231) to +(2"31-

1).
UnsafeResources is of type string list, and is enclosed in braces.

The other attributes listed below are all defined by a name enclosed within brackets ([]). These
attributes all have valid data types, but are defined by a TCL procedure. (The TCL procedure is the
name in brackets). Whenenver the value of one of these attributes is required, the named TCL
procedure will be evaluated at run time to return the result.

The above attributes are all members of a standard set of attributes that can be defined in any class
or object template definition.

There are three different types of template definitions. "objectTemplate" definitions refer to a
specific object in a specific program. For example, if a template is defines a "objectTemplate
XMailTool.Command {..." it refers to a particular Command Button widget in the XMailTool
application.

If the definition is listed as "classTemplate Command {..." then the attributes of the definition refer
to any Command Buttons that are not superseded by an object tempalte definition.

Both class and object templates support the same set of attributes; they merely provide two
different mechanisms for associating those attributes with objects.

A third type of template definition is that of an "appTemplate,” which allows the configuration of
per-application attributes. Application templates support a different set of attributes than
class/object templates.

When UltraSonix starts, it retrieves the list of directories containing template files from its
configuration file, and loads all files ending in the ".tmpl" extension in those directories. These
files are parsed into an internal (in-memory) format, which is stored as a dictionary of objects of
class Template.

8.2 Defaults and General Configuration File

UltraSonix may be run on different machines with different configurations. Thus, a file exists for
the user to specify default variables for different parts of the system. The file, "mercator.config" is
used for assignment of various variables as well as to contain fallback values for undefined
template attributes.

If at any time, UltraSonix needs the attribute value for a particular object, it performs the attribute
look up in the following order:

1) If a template exists for the object’s specific name, and the attribute is defined, then return the
value (calling a TCL procedure, if the attribute has been specified that way).

2) If an object template does not exist, or if the attribute was not defined in the object template,
then UltraSonix checks to see if a template exists for the class that the object belongs to. If a
class template exists, and the attribute is defined, then return the value. (Again, calling the
TCL procedure, if necessary).

3) As the final fallback, UltraSonix will look in the file "mercator.config” for attribute values not
defined in a Template file. Default attribute assigments in this file may also be TCL
procedures. If a value for a standard attribute is not given here, UltraSonix will not start--the
user *must* provide fallback values for all template attributes in use.

The following is a sample portion of the mercator.config file. The format of the file is a series of
assignment statements with the variable name on the left, followed by an equals sign, followed by
the assignment value: (very similar to the lines of a template file)

HitH

#i#H# Default values for class templates

it

defaultClassNavigable =TRUE

defaultClassShell =TRUE
defaultClassAllowTextMode = FALSE
defaultClassSound = "/net/hc22/selbie/ezek2517.au"
defaultClassSpeakOnEnter =""
defaultClassSpeakOnInfo =""

defaultClassLooped = [fooProcedure]

8.3 Declaring New Attributes with mercator.attrib

A file exists that allows the user to "declare” new attribute variables by specifying an identifier
name for the template files, an identifier name for the mercator.config file, its data type, and the
type of templates the attribute will be valid on. This ability is very handy advance customization--
the ability to add new template features--without having to recompile UltraSonix.

The format of the "mercator.attrib" file is a series of lines with four fields. Each line represents
one declaration. The following is a sample portion of the file that declares some of the "standard"
attributes.

UltraSonix Attribute definition file

#

NAME TYPE CONFIG FILE NAME TEMPLATE TYPE

##
navigable BOOLEAN defaultClassNavigable CLASS

volume INTEGER defaultClassVolume CLASS
speakOnEnter STRING defaultClassSpeakOnEnter CLASS
foo INTEGER defaultAppFoo APP

bar STRINGLIST defaultClassBar CLASS

The first identifier on each line is the name of the attribute identifier as it will appear in the template
definition files.

The second field is the data type of this identifier. Valid types are BOOLEAN, INTEGER,
STRING, or STRINGLIST.

The third field represents the name of the identifier in the mercator.confi g file. The differentiation
between the template attribute name and the config file name allows the user to have separate
default values for both class/object and application attributes. Notice that the identifier "foo" is
defined to be used in both Class/Object and Application templates, but has separate identifiers in
mercator.config.

The fourth field may either be CLASS or APP to indicate what type of template the declared
attribute is to be used with. CLASS indicates that it will be use in either object or class templates

(object and class templates always have the same attributes). APP indicates that it will be used in
Application templates.

Thus to declare a new attribute, an entry in "mercator.attrib” must be added as well as a
corresponding entry in "mercator.config". Undefined (ala bad) events may occur is an attribute
does not have a fallback definition in or procedure in mercator.config. (disallow this in later work)

After these entries are added, UltraSonix needs to be restarted for these changes to take effect.

To be added: Facility to resource all template and configuration files during run time. Thus, a
restart for changes to take effect won't be necessary.

8.4 Adding New UltraSonix Configuration Variables

If at any time a programmer maintaining UltraSonix needs to create a new user-definable varialble
that will be referenced throughout the system, he or she only needs to add an entry in the
Configuration (mercator.config) file.

For example, suppose a driver for a new Braille terminal is written. The driver is a shared object
file called "MyBraille.so". The shared object may need other parameters passed to it when it is
loaded: the name of a braille server to start, or some additional configuration variables for
example.

UltraSonix will parse and store *any* entries in the configuration file that it encounters. Sono
additional programming is needed to support parsing of new configuration attributes; simply add
the new attributes to the configuration file:

myBrailleServer = "/my/home/dir/server”

myBrailleColumns = 80
8.5 Accessing Attributes Programmatically
Developers have both C++ and TCL interfaces to retrieving attributes from the configuration and
template subsystems. The’cxamplc below shows how to retrieve data from the configuration file
for the "MyBraille" examples above.

Inside MyBraille.so, the programmer must include "Config.h" to access this new attribute.

The easiest way to access the attribute is via the "direct" APIs which assume the type of the
attribute:

char *brailleServer = Config::GetString("myBrailleServer");
int brailleColumns = Conﬁg::GetInteger("myBrailleColumns");

(There are similar APIs for retrieving boolean and suing list data.)
These routines have undefined return values if the attribute does not exist or if its type does not

match the "expected” type. A safer way to fetch the data is to return it into a FieldData instance,
like this:

FieldData *data = Config::GetDefaultByName("myBrailleServer");
char *brailleServer;

St

if (data && (data->Tag == STRING))
brailleServer = data->String();
else
// ...do some error reporting...

FieldData is a special class that is used to represent the values of configuruation or template
attributes; it may represent data in any of the supported types. The GetDefaultByName() API will
return a NULL FieldData pointer if the attribute does not exist. After the pointer has been returned,
callers can determine the type of the value as it exists in the configuration file.

FieldData instances are used by both the Config and the Template subsystems, and thus the APIs
used to access attributes are the same for both.

8.6 Writing Templates to Files

An interpreter command and function are in place to allow for the possibiblity of interactive
customization.

The interpreter command is called "writeout" and it is binded to the function "WriteOut" which is
defined in Interp.cc. It can be called from TCL as well.

"writeout” has the following syntax:
writeout object-name filename [dictionary]
object-name is the name of the Template object (e.g. XmLabelGadet)
filename is the fully-qualified file name of where the output is to be placed
dictionary is an optional parameter to specify which Template dictionary to search for attributes for.
By default all dictionaries are searched until a matching object-name is found. They are searched in
the following order: Object-Templates, Class-Templates, and App-Templates.
Caveats:

4

« "WriteOut" is a friend function of the Template Class. This is to
facilitate access to the private dictionaries. Most of this code
« should be made as a method of the Template Class.

8.7 Re-Sourcing of Template and Configuration files

Four commands have been added to the Interpreter code (Interp.cc) to support reloading of
configuration and template information.

"loadattributes" - reloads mercator.attrib

“loadconfig" - reloads mercator.config

"loadtemplates" - reloads all the template files

"loadall" - calls the above three commands in the above order

The corresponding function names that these commands bind have the same name.

9.0 DEVICE-SPECIFIC CODE
9.1 Motivation

UltraSonix "hides" the details of low-level input/output processing to make the system as portable
and flexible as possible. All device-specific I/O code is externalized out of the "core" part of the
system. I/O code is dynamically loaded at runtime as it is needed.

To ensure that "foreign" code will operate as expected with UltraSonix, the system requires that all
loadable code conform to one of a set of "base class" APIs that define how different I/O devices
will appear to the rest of the system.

By writing loadable I/O code that conforms to one of the pre-defined base classes, arbitrary device-
specific code can be loaded into UltraSonix at runtime and can interoperate with the rest of the
software, without the need for any changes. All existing C++ and TCL code can use the new
device-specific code without even being aware of what devices it is interacting with.

This section details the loadable /O strategy used by UltraSonix, and describes how to create new
device-specific code.

9.2 Loadable Base Classes

As mentioned, all device-specific code must conform to the API specified by one of the "loadable
base classes.” The loadable base classes are C++ classes the enforce particular APIs for different
categories of devices, currently non-speech audio, speech synthesis, and braille.

When writing new device support, developers should chose the existing loadable base class that
most closely approximates the new device they are adding support for. They must provide device-
specific implementations for all of the functions in the particular base class they are deriving their
code from.

The following sections detail the APIs provided by the various loadable base classes.

9.2.1 The Audio Generic’ API

The generic audio API is defined in Audio.h. Note that the API is subject to change as new needs
are identified.

The Audio superclass defines the type Audio::SoundID which can be used to refer to playing or
loaded sounds. Two methods should be implemented by derived classes:
SoundID PlaySound(const char *sound_file, float *rate, int volume,

int muffle, int looped);

PlaySound plays the specified sound file with the given
parameters. It returns a unique ID for the playing sound.

int StopSound(SoundID sound_id);

StopSound halts the play of the specified sound ID.

int StopAllSounds();

Halts all sounds currently being played.

9.2.2 The Speech Generic API

The generic speech API is defined in Speech.h. Note that the API is subject to change as new
needs are identified.

The following methods should be implemented by derived classes. All should return 0 on failure
and 1 on success.
int Speak(const char *text);
Speak the specified string of text.
int SpeakUnix(const char *text);

Speak the specified string of text, performing some common UNIX
translations (for pathnames, and so on).

int Notify(const char *text);
Reserved for future use.

int SetSpeechRate(int new_rate);
Change the speech rate to the specified value.

int StopSpeaking();
Halt the speech synthesizer.

int SetVoice(const char *veice_code);
Change to a voice specified the provided voice code string (this will
probably be implementation dependent). The voice name must be one
of the supported voices for this particular hardware.

int SetLanguage(const char *lang);

Change the current language. The new language must be one of the
ones supported by the hardware.

int SetGain(int newGain);
Change the output volume of the speech synthesizer.
int SetDictionary(const char *word, const char *pronunciation);

Install a synthesizer-specific pronuncation in the dictionary.

S ——

B R ot S VA S

int UnSetDictionary(const char *word, const char *pronunciation);
Remove a synthesizer-specific pronuncation from the dictionary.
Capabilities& GetCapabilities();
Return an object containing the capabilities of this particular
speech synthesizer: languages and voices that are supported,
minimum and maximum rate, and whether software gain control is
supported. '
9.2.3 The Braille Generic API
The Braille generic APl is defined in Braille.h. Note that the Braille base class is derived from
FDlInterest, as many braille terminals are also input devices. Thus, any subclasses of Braille must
implement the proper FDInterest protocols, as described in the section on Handling Input.
void DisplayRaw(const char *text, int rawPosition = 0);
Display the specified text on the braille device, at the specified
position. The DisplayRaw() routine treats all status and "normal"
display cells the same: text will the cross status/normal cell
boundary; position is relative to the first physical cell on the
display.
void DisplayBraille(const char *text, int position = 0);
Display the specified text in the "normal” display area of the
braille terminal, at the specified position. If the text exceeds
the number of display cells, it will be clipped.
void DisplayStatus(const char *text);
Display the specified text in the status area of the braille
display. If the text exceeds the number of status cells, it will
be clipped.
int JumpScroll();
Return the current jump scroll enable status (TRUE or FALSE).
void JumpScroll(int jumpScroll);
Set the jump scroll status (TRUE or FALSE)]
void ToggleSumpScroll();

Invert the current jump scroll status.

void SetText(const char *text[], int numRows);

Download an array of text lines into the braille display. The

TE AT

loadable object should implement scrolling through the downloaded
lines.

void Translation(const unsigned char *translation);

Set the translations (byte conversions) that will be used by the '
loadable object. '

const unsigned char *Translation();
Return the translation map currently in use.

Capabilities& GetCapabilities();

i i

Return an object containing the capabilities of this particular
braille harware: number of display and status cells, presence or
absence of particular keys, etc.

9.3 Writing New Loadables

This guide provides a quick overview of writing loadable /O modules for use with the UltraSonix
software. It assumes some familiarity with C++ and screen reader terminology.

9.3.1 Basic Concepts

The fundamental goal with the loadable module support in UltraSonix is to provide a mechanism to
separate device-specific code from the core of the screen reader system. Device specific code can
be compiled into "dynamically loadable” modules (also called "shared object files") which are then
loaded into UltraSonix at run-time. Run-time or "dynamic loading" makes it possible for
UltraSonix to use /O devices which were not available at the time the system was written.

The internals of UltraSonix are written to use "abstract” interfaces to the various I/O devices which
may be present on a user's workstation. For example, UltraSonix is written to use a generic Audio
object and a generic Speech object. These generic objects enforce a particular interface for that
UltraSonix relies on. The functions, or "methods," provided by these objects specify the interface
between UltraSonix and the device.

These generic objects do not provide any functionality by themselves. Instead, they simply
provide a programming interface which can be used by the rest of the UltraSonix system.

At runtime, subclasses of these generic classes that have been compiled as dynamically loadable
modules are loaded into the system. Each of these subclasses provides the same APIs as their
generic superclasses, but they also provide an actual implementation for interacting with a
particular device.

As an example, there may exist severa! subclasses of the Speech generic class implemented as
dynamic modules: Dectalk, TrueVoice, and so on. When UltraSonix is run, one of these modules
(as determined by the configuration file) will be dynamically loaded into the system and used in the
place of the generic Speech object. Since the subclass has the same API as its generic superclass,
everything works correctly.

R ———.

9.3.2 Writing a Loadable Module

The first thing you must do when writing a loadable module is decide which generic superclass
you wish to base your module on. You must use one of the superclasses that are already known to
UltraSonix. Currently there are only two: Speech and Audio. The core of UltraSonix has been
written to use these modules. Introducing new generic superclasses involves restructuring the
UltraSonix IO system so that it can decide when to use the new module.

If you wish your loadable module to "act like" an audio device, you must derive from the Audio
generic superclass. Likewise for the Speech superclass. Your module must implement the
methods defined by these superclasses for it to work properly with UltraSonix. See the secions
below on the particulars of the generic APIs for the Audio and Speech superclasses.

Once you've decided which superclass to use, you create a C++ class derived from that superclass.
In the example, suppose we have a superclass called Super declared as follows:

class Super {
public:
Super(); // constructor
virtual ~Super(); // destructor
i

// Subclasses must implement DoSomething to behave
/I like a Super.
/

virtual int DoSomething();

};

To create your loadable subclass (we'll call it Sub), create a file Sub.h that contains the declaration
of Sub, and a file Sub.cc that contains the implementation of Sub.

In Sub.h, provide (at least) the following:

#include "Super.h"
#include "Loadable.h"”

class Sub : publid Super {
public:

Sub();

~Sub();

int DoSomething();
b

Note the #include of the file Loadable.h. This file contains the definition of a macro
LOADABLE_CLASS_DEEFN that performs some of the "boilerplate” required work that loadable
modules must implement.

Also note that you must provide a "default" (parameterless) construztor for the class.

Now in Sub.cc, you provide implementations of the methods declared in the .h file:

#include "Sub.h"
LOADABLE_CLASS_DEFN(Sub);

Sub::Sub() { /* ...constructor code goes here ... */ }
Sub::~Sub() { /* ...destructor code goes here ... */ }

int
Sub::DoSomething() { /* ... DoSomething impl ... */ }

Note the call to LOADABLE_CLASS_DEFN. This is a macro which is provided in the
Loadable.h header file. You MUST place this macro in the .cc file for your class to function
properly as a loadable module in UltraSonix. The argument to the macro is simply the name of the
class you are creating. '

This macro simply creates a function called NewSub which calls the default (parameterless)
constructor on the Sub class. UltraSonix relies on this function to bootstrap the loading process.

To summarize the requirements for writing a loadable module:

* Choose an already-existing superclass to base your work on.

* Include the Loadables.h header file.

* Make sure you provide a default constructor.

* Make sure you provide implementations for all of the
methods required by the superclass.

* Make sure you call the LOADABLE_CLASS_DEFN macro to
automatically generate the boilerplate code needed by
UltraSonix.

9.3.3 Compiling a Loadable Module

The details for how to compile a loadable module will vary from platform to platform and from
compiler to compiler. The guidelines below are for the Sun SPARCcompiler C++, version 4.0.1.
There are some general rules which will apply to any compiler however.

First, compile the .cc files into .o files. You must specify flags to generate position independent
code (PIC). On the Sun compilers, the flags to use are -G and -K pic:

CC -G -K pic -¢ Sub.cc

This will create the file Sub.o. Next, you must compile the .o files into a shared object (.so) file.
Note that if your loadable module depends on any other shared libraries you MUST pass these on
the link line via -1. If they are present on the link line, then the Solaris runtime loader will know to
load them at the same time it loads your module. Without the libraries you will get undefined
symbols at runtime. Also note that if any of these libraries are shared libraries, and they reside in a
place other than /usr/lib, you will need to provide a "library run path"” via the -R option. This path
specifies directories in which the runtime linker will search for the libraries you need.

Link as follows:

CC -G -K pic -0 Sub.so Sub.o -L/your/dir -R/your/dir -lyourlib
UltraSonix follows the convention that the filename of the resultant .so module MUST be the same
as the class defined in that file (and the same as the name passed to LOADABLE_CLASS_DEFN).

Since only the filename of the shared object module is specified in the configuration file,
UltraSonix uses the filename to derive the name of the class defined in that file.

9.3.4 Configuration

Certain loadable modules may require the specification of user-customizable parameters to operate
effectively. For example, the Dectalk loadable module requires information about how to start the
dectalkd speech server.

We encourage writers of loadable modules to use the standard configuration file subsystem to
specify user-supplied parameters. Any loadable code can retrieve attributes from the configuration
file via the Config interfaces defined in Config.h. By keeping all customization information in one
configuration file (rather than a multitude of device-specific configuration files), maintenance and
administration should be made easier.

9.4 Existing Loadable Modules

This section describes the loadable /O modules currently shipped with UltraSonix: how to use
these modules, and how they are implemented.

The currently available modules are:

Dectalk DECtalk DTCO1 Speech Synthesizer

DectalkX DECtalk Express Speech Synthesizer

TrueTalk Entropic TrueTalk Software-Based Speech
Synthesizer

NetAudio Georgia Tech NetAudio audio server protocol

AudioFile Digital AudioFile audio server protocol

Alva HumanWare ALVA 3-20 and 3-80 Braille terminals

Genovations Genovations external keypad

9.4.1 Dectalk

9.4.1.1 Using the Dectalk Speech Synthesizer with UltraSonix

UltraSonix supports the Dectalk speech synthesizer. To use Dectalk with UltraSonix, connect the
speech synthesizer as specified by the user's manual and start the Dectalk host daemon, dectalkd,
on the same host, which is specified by the environment variable DECTALKHOST. After these
steps change the line starting with "speechLoadable" in the configuration file to:

speechLoadable = "Dectalk"

This will tell UltraSonix to look for the loadable object named Dectalk.so in one of the directories
specified by the loadableSearchPath variable in the configuration file.

When UltraSonix is executed it will load Dectalk.so automatically and the user should be able to
hear speech output from the Dectalk.

9.4.1.2 Check List

If there is no speech output when UltraSonix starts up, make sure the following have been carried
out:

a. Connect the Dectalk to the host which will be running the dectalk daemon.
b. Start the daemon dectalkd on the above host.

c. On the user's host, set the environment variable DECTALKHOST to the name of the
machine used in a. and b. (This step is not necessary if the Dectalk is connected to the same
machine UltraSonix will run on.)

d. Set the speechLoadable variable in UltraSonix's config file to "Dectalk". !

e. Set the loadableSearchPath variable in UltraSonix’s config file to contain the directory
where the Dectalk loadable object, Dectalk.so is stored.

9.4.1.3 Implementation Details

Dectalk.so is implemented as a subclass of the generic Speech object. It contains the set of api's :
which is specified by the Speech object's public virtual functions. The constructor Dectalk::Dectalk
takes the name of the host as its parameter and opens a socket connection to the daemon running on
that host. The SetVoice function takes the following one character voice parameters:

p = standard male voice

b = standard female voice
h = deep male voice

f = older male voice

k = child's voice

r = deep female voice

u = light female voice

d = whispery male voice

w = whispery female voice

The argument to the SetSpeechRate function is the number of words spoken per minute on the
average. The Speak function takes a string of text to be spoken. There may be additional
functionalities which are specific to the speech synthesizer used.

/

9.4.1.4 Server Options

The server, dectalkd, is responsible for controlling the physical Dectalk hardware. The server can
be used with either the older Dectalk devices, or the newer Dectalk Express.

The server understands the following options:

D I epep———

-d Enable socket debugging options.

-f Run in foreground (no daemon mode).
-p port Use the specified IP port number.
-ttty Use the specified tty device.

By default, the server uses port 1330 and device /dev/ttyb. When started from UltraSonix, the
server should be run with the -f option so that it can be reliably shut down when UltraSonix exits.

9.4.2 DectalkX

9.4.2.1 Using the Dectalk Express Speech Synthesizer with UltraSonix

UltraSonix supports the Dectalk Express speech synthesizer. To use Dectalk Express with
UltraSonix, connect the speech synthesizer as specified by the user's manual and start the dectalk
host daemon, dectalkd, on the same host as specified by the environment variable
DECTALKHOST. After these steps change the line starting with "speechLoadable" in the
configuration file to:

speechLoadable = "DectalkX"

This will tell UltraSonix to look for the loadable object named DectalkX.so in one of the directories
specified by the loadableSearchPath variable in the configuration file.

When UltraSonix is executed it will load DectalkX.so automatically and the user should be able to
hear speech output from the Dectalk Express.
9.4.2.2 Check List

If there is no speech output when UltraSonix starts up, make sure the following have been carried
out:

a. Connect the Dectalk Express to the host which will be running the dectalk daemon.
b. Start the daemon dectalkd on the above host.
c. On the user's host, set the environment variable DECTALKHOST to the name of the
machine used in a. and b. (This step is not necessary if the Dectalk is connected to the same
machine UltraSonix will run on.)
d. Set the speechLoadable variable in UltraSonix's config file to "DectalkX".
€. Set the loadableSearchPath variable in UltraSonix's config file to contain the directory
where the Dectalk Express loadable object, DectalkX.so is stored.
9.4.2.3 Implementation Details
DectalkX.so is very similar to Dectalk.so. The only modification we made was in the control
characters used to implement the SetVoice, SetSpeechRate, and StopSpeaking functions. (It should
be noted that the StopSpeaking function uses an undocumented Dectalk Express command: it
simply sends a control-c character (ascii 3) to the Dectalk Express. This is equivalent to the [:flush

all] command described in the manual. We used the undocumented command because the [:flush
all] command did not seem to work on our systems.)

9.4.2.4 Server Options

The server, dectalkd, is responsible for controlling the physical DectalkX hardware. The server
can be used with either the older Dectalk devices, or the newer Dectalk Express.

The server understands the following options:

-d Enable socket debugging options.

-f Run in foreground (no daecmon mode).
-p port Use the specified IP port number.
-ttty Use the specified tty device.

By default, the server uses port 1330 and device /dev/ttyb. When started from UltraSonix, the
server should be run with the -f option so that it can be reliably shut down when UltraSonix exits.

9.4.3 TrueTalk

9.4.3.1 Using the Entropic TrueTalk Speech Synthesizer with UltraSonix

UltraSonix supports Entropic's software speech synthesizer, TrueTalk. To use TrueTalk with
UltraSonix, the license server and TrueTalk server must be set up as described in the TrueTalk
User's Manual. After these steps are done change the line starting with speechLoadable in the

configuration file to:

speechLoadable = "Truetalk"

This will tell UltraSonix to look for the loadable object named Truetalk.so in one of the directories
specified by the loadableSearchPath variable in the configuration file.

If the TrueTalk license server and the TrueTalk speech server are up and running, and the Truetalk
loadable object is under one of the directories specified by the loadableSearchPath, UltraSonix will
load Truetalk.so automatically when it is run and the user should be able to hear speech output
from UltraSonix.

9.4.3.2 Check List

If there is no speech output when UltraSonix starts up, make sure the following have been carried
out:

/

a. The TrueTalk license server, elmd, is running on a host named by the user's
ELM_HOST environment variable.

b. Set the TT_BASE environment variable to the TrueTalk directory on the user's system.
c. Run the TrueTalk server.
d. Set the speechLoadable variable in UltraSonix's config file to "Truetalk".

e. Set the loadableSearchPath variable in UltraSoiix's config file to contain the directory
where the TrueTalk loadable object, Truetalk.so 1s stored.

f. Make sure the audio device is not busy.

9.4.3.3 Implementation Details

Truetalk.so is implemented in the same fashion as Dectalk.so, as a subclass of the generic Speech
object. Truetalk.so contains the set of api's which conform to ones specified by the Speech
object’s public virtual functions. Currently the SetVoice and the SetSpeechRate functions follow
Dectalk's convention, where the voices are specified by a single character and the speech rate is
specified in words per minute. The voice specification currently uses these values:

p = standard male voice

b = standard female voice
h = deep male voice

f = older male voice

k = child's voice

r = deep female voice

u = light female voice

d = whispery male voice

w = whispery female voice

9.4.3.4 Compatibility Issues

Since TrueTalk is a software speech synthesizer, it will require an audio device on the user's
machine. This means that if TrueTalk is used with an audio server such as netaudio, which does
not mix more than one audio inputs the user would need to have two audio devices, which is
currently the case.

9.4.4 NetAudio

9.4.4.1 Using the NetAudio System with UltraSonix

The NetAudio.so loadable module provides support for the Georgia Tech NetAudio-2 non-speech
audio server. This server was developed at Georgia Tech specifically to support UltraSonix. Note
that it bears no releation to the NetAudio server from NCD, despite the name.

NetAudio-2 supports various filtering and signal processing operations within the server code; it
only runs on Sun SPARCstations.

For more information on NetAudio-2, see the WWW page at:
http://www cc.gatech.edu/gvu/multimedia/NetAudio.html

To enable support for NetAudio-2, set the following attribute in the mercator.config file:
audioLoadable = "NetAudio”

The NetAudio.so loadable module will (optionally) start the NetAudio-2 server on the local

machine.

9.4.4.2 Implementation Details

When loaded, NetAudio.so will optionally attempt to start the NetAudio-2 server (netaudiod) on

the local machine. If the environment variable NETAUDIOHOST is set, NetAudio.so will attempt
to connect to netaudiod on the specified machine. If NETAUDIOHOST is not set, NetAudio.so

R i —

will retrieve the value of netaudioServer from mercator.config, and execute this command,
assuming that it will start a new netaudiod.

NetAudio.so also retrieves the value of netaudioTimeout from mercator.config. This value
specifies, in seconds, how long NetAudio.so will attempt to connect to netaudiod before it gives

up.
The methods in the generic audio API, PlaySound, StopSound, and StopAllSounds, map directly
into the netaudiod RPC protocol.

9.4.5 AudioFile

9.4.5.1 Using AudioFile with UltraSonix

The AudioFile system is a non-speech audio server from Digital Equipment Corporation. It is
freely available on the net.

Enable AudioFile support with the following line in mercator.config:
audioServer = "AudioFile"

The AudioFile.so loadable module provides an interface to the audiofile server process that
conforms to the generic audio APL. Note that the currently implementation of AudioFile.so does
not start an audiofile server: the server must be started "by hand" before UltraSonix is run.

9.4.5.2 Implementation Details

The audiofile server does not support the filtering and signal processing applications required by
UltraSonix. Therefore, the AudioFile.so loadable module creates a "work crew” of threads to
perform signal processing within the UltraSonix process itself. Filtering is done within
UltraSonix, rather than when the NetAudio.so module is used and filtering is done within the
server.

9.4.5.3 Caveats ’

To use a multithreaded ("MT") loadable module, UltraSonix itself must be recompiled with the -mt
option. By default, the system as shipped is not compiled with this option. Therefore, I'
recompilation is necessary to use AudioFile.so.

9.4.6 Alva
(NOTE: this section is not finished.) f
9.4.7 Genovations E'
9.4.7.1 Using the Genovations Keypad with UltraSonix

The Genovations Keypad is an external serial device with a standard set of numeric keypad

controls. This device can be used as a (limited) alternative to the "standard" workstation keyboard
typically used to navigate in UltraSonix.

—

To use the Genovations device with UltraSonix starts, insert the following line into your config
file:

keypadLoadable = "Genovations"
This will load the Genovations.so shared object file into the UltraSonix process.

By default, UltraSonix assumes that the Genovations keypad is attached to serial port labeled as
"/dev/ttya". The user can set an environment variable, GENOVATIONSDEYV, to override this
setting.

Note that the current implementation of Genovations.so does not start a server process, so the
keypad must be attatched directly to the local machine. Future versions may support remote access
to the keypad.

Be sure that there are no programs, services, or alternate configurations that could potentially lock
the serial port. One common problem is that Solaris by default assumes that the serial port is used
to run a dumb terminal. Use the "admintool” to turn the terminal services off the serial port.

9.4.7.2 Implementation Details

The current "bindevent” mechanism used by UltraSonix does not allow the association of TCL
procedures with user input other than the X event stream. Thus, there is no way via "bindevent"” to
associate a particular piece of TCL code with a key press on the Genovations keypad.

Instead, the Genovations.so code "directly" invokes certain actions whenever key sequences are
pressed. These actions are "hard-wired” in the Genovations code and cannot be changed without

recompiling.

The current mapping of keypad events to Actions is:

KEY ACTION

0 StopSpeaking

1 ReadThisChar

2 DownPressed

3 ReadThisWord

4 LeftPressed

5 FivePressed

6 RightPressed

7 ReadThisSentence
8 UpPressed

9 ReadThisSentence
. ChangeTextMode
enter SelCurrent

10.0 MISCELLANEOUS TOPICS

This section describes a number of miscellaneous topics that may be of interest to developers
maintaining the UltraSonix source code. This section discusses the subprocess management APIs
available within the system, and the console subsystem.

10.1 Process Management

This section describes the facilities provided by UltraSonix for managing subprocesses. Its
primary audience is programmers maintaining the internals of UltraSonix, or developers of
loadable modules who need to spawn server processes to manage 1/O.

10.1.1 Introduction to Process Management

Occasionally UltraSonix must spawn child processes to accomplish some task. The chief
situations where subprocesses are started are the console application, and any device-specific /O
servers which may be required by your particular hardware configuration.

Subprocess management is accomplished via the ProcessManager class. There is only one
instance of this class in UltraSonix, maintained by the global Mercator instance. To retrieve the
ProcessManager instance in your code, do the following:

// Declare the single global Mercator instance.
extern Mercator *mercator;

// Get the ProcessManager.
ProcessManager *pm = mercator->GetProcessManager();

The ProcessManager class provides the following facilities:

« "Wrapper" functions to start, stop, and signal processes.

« "SIGCHLD handling for all subprocesses (to prevent "zombie"
processes.)

« Optional automatic shutdown of subprocesses on exit.

* Subprocess tracking.

The goal of the ProcessManager class is to provide a single point of control for all subprocess-
related operations to (1) prevent possible programmer errors, and (2) provide orderly control over
subprocess termination. ,

10.1.2 Using the Process Manager: Basic

Most code will use only one method on the ProcessManager: StartProcess(). The StartProcess()
method is used to spawn a new child process. Here is the declaration of the StartProcess()
method:

pid_t StartProcess(int argc, char * const argv(]},
char *const envp[] = NULL,
int killOnShutdown = TRUE,
UnexpectedDeathProc unexpected = NULL,
BeforeDeathProc before = NULL,
AfterDeathProc after = NULL);

Note that the assignment operators in the declaration provide C++ "default parameters” to these
arguments. If these parameters are omitted in the call to StartProcess() the default values will be
used. So "simple" use of StartProcess only requires argc and argv.

The first four parameters (argc, argv, envp, killOnShutdown) are the most important for basic use
and are described here. The other parameters are described under "Using the ProcessManager:
Advanced."

argc Argument count
argv Argument vector
envp Process environment

killOnShutdown Should the process be terminated when UltraSonix
is shutdown

The argc and argv parameters are required. ProcessManager() examines argv[0] to try to locate the
executable filename. If argv[0] contains a slash character, argv[0] is treated as the actual filename.
If it does not contain a slash, the user's PATH is searched for the specified filename. This
behavior allows absolute pathnames or PATH searching to be employed.

Envp is optional. If present, it is used as the subprocess's environment; if omitted, the parent's
environment is used. This feature is primarily used to allow UltraSonix to spawn subprocesses
which are themselves UltraSonix clients (that is, they use the UltraSonix-modified X libraries to
communicate properly with the UltraSonix system).

The killOnShutdown parameter is a boolean which specifies whether the ProcessManager will
terminate the subprocess when UltraSonix itself shuts down. Child processes are terminated via a
SIGTERM signal.

StartProcess() returns the process ID of the subprocess which was created, or -1 of an error
occurred.

10.1.3 Using the Process Manager: Advanced

The ProcessManager allows callers to register three functions that can be used to handle special
subprocess needs. The profotypes of these handler functions are as follows:

typedef int (*UnexpectedDeathProc)(pid_t);
typedef int (*BeforeDeathProc)(pid_t);
typedef int (*AfterDeathProc)(pid_t);

All of these arguments have default parameters of NULL.

The UnexpectedDeathProc, if supplied, will be called by ProcessManager when the child process
terminates "unexpectedly” (that is, not as a result of a call to StopProcess() or the normal shutdown
procedure). A common use of this proceduse might be to restart an I/O daemon that has died.

Note that if a daemon process is restarted, any code that was connected to that daemon will have to
reconnect.

The BeforeDeathProc and AfterDeathProc arguments, if supplied, are called before and after
(respectively) UltraSonix performs an "orderly" termination of the subprocess. These can be used
for any specific clean-up code that might need to be run when a process is halted.

In addition to StartProcess(), the ProcessManager provides several other APIs:
int StopProcess(pid_t pid)

This method stops the process specified by pid via a SIGTERM
signal. Even processes that are not started from
ProcessManager may be stopped using this method.

int SuspendProcess(pid_t pid)
int ResumeProcess(pid_t pid)

These methods are used to suspend and resume processes
(whether or not they were started from ProcessManager) via
SIGSUSPEND and SIGRESUME signals.

int SignalProcess(pid_t pid, int signal)

SignalProcess() is used to send arbitrary signals to a

process. Note that if you use SignalProcess() to send a
SIGTERM or other fatal signal to a process, the death is
considered unexpected (and hence, the UnexpectedDeathProc will
be called if available). Killing a process via StopProcess()
provides an orderly shutdown (and call of BeforeDeathProc and
AfterDeathProc, if available).

ProcessManager::ProcessNode *FindProcess(pid_t pid)

FindProcess() is used to retrieve per-process information
given the pid of a process. This call can only retrieve
information for processes started via ProcessManager. See
ProcessManager.h for the type definition of ProcessNode.
Callers of this function can update information in a process's
ProcessNode, but they are discouraged from doing so, as this
information is used internally by ProcessManager. Callers
should NEVER free the data returned by FindProcess(). The
method will return NULL if the specified process has no
associated ProcessNode.

10.1.4 Process Manager Implementation
ProcessManager is implemented as an FDInterest subclass. When an instance of the class is
intialized, it creates a pipe for reading and writing, and installs a signal handler (called Reaper) to

catch SIGCHLD signals.

The Reaper function, when it detects that a child process has died, writes the process ID and exit
status of the child onto the writer end of the pipe.

The reader end of the pipe has been registered with the FDInterest superclass as an "interesting”"
descriptor. so it will become available for reading after Reaper has run. The HandleActivity()
method will be dispatched, which collects the process ID and status of the child process.

After requisite error checking, HandleActivity() will do the following:

* Determine if the shutdown was expected. An "expected” shutdown
is denoted by the "flaggedForKill" boolean being set to TRUE in
the process's ProcessNode. This flag is set to TRUE whenever
StopProcess() is called to terminate a process.

* If the death is unexpected, it calls the UnexpectedDeathProc for
the procedure, if it exists.

» If the death is expected, it calls the AfterDeathProc for the
procedure, if it exists.

*» The ProcessNode for the process is removed from the dictionary
of ProcessNodes.

The reason for the pipe implementation is to prevent arbitrary code form being run inside the signal
handler. The signal handler is very simple: it merely has to catch the child exit status and write the
process ID and status onto a pipe and return.

The more complicated processing of data structure manipulation and call of (perhaps arbitrary)
client-supplied death procedures is relegated to Handle Activity().

10.2 The Console
10.2.1 Using the UltraSonix Console

UltraSonix Configuration (/opt/GTsonicx/bin/gui-console) is a GUI based console which allows
the user to configure some of the attributes of UltraSonix interactively. The users can also issue
commands in the window from which UltraSonix Configuration is started. (Eventually this will be
incorporated into a text area in the console itself.) The utility currently allows the user to set the
speech rate, speech voice and the user level with toggle buttons.

10.2.2 Starting a Console

UltraSonix can start the console automatically as a child process. When UltraSonix starts it looks
for the string list variable "console" in the config file (default is
/opt/GTsonicx/etc/mercator.config). The variable should contain a list of strings which form the
command to start the console. The first string in the list should be the absolute path and name of
the console program, and the rest of the list should contain any command line options to be passed
to the console.

The variable, "consoleWait", in the config file specifies how long UltraSonix will try to connect to
the console via named pipes. If the connection is not established after this time then UltraSonix
assumes that the console fails to start and it will revert back to stdin and stdout for input and
output.

R IS W

g el o e

[t

SRR LT

TERT E e

O R

i gy

10.2.3 Console Environment

The GUI based console in the package requires a different LD_LIBRARY_PATH environment
variable then UltraSonix. This may be true for other consoles as well. To accommodate this,
UltraSonix looks for another string list variable "consoleEnv". Each string in this variable should
be in the form:

"VAR=VALUE"

where VAR is the name of the environment variable and VALUE is its value when the console is
running. For example, an Motif based console applications would need to have its
LD_LIBRARY_PATH set to include paths to the modified R5 and RAP libraries. The value of
LD_LIBRARY_PATH from the user's shell environment will be replaced with the one specified in
consoleEnv. (The user can also unset an environment variable by including the variable's name in
the consoleEnv string list without any value.)

10.2.4 Example

i
Set which program to run as console
HH#

i

console =(
consoleWait =35
consoleEnv =
("LD_LIBRARY_PATH:/opt/GTsonicx/lib/RAP:/opt/GTsonicx/lib/RS /opt/X11R5/lib:/net/hm2/p
ackages/X11R6/lib:/usr/di/lib")

/opt/GTsonicx/bin/gui-console*)

10.2.5 Implementation Details

The UltraSonix Configuration Utility creates a pair of named pipes: /tmp/from-console and
ftmp/to-console, when it first starts up. These will be opened by UltraSonix if they have been
created when it starts up. Using these named pipes the Configuration utility is able to issue Tcl
commands that UltraSonix already understands directly, as if they were typed in by a user. The
GUI part of the code then simply sets up appropriate callback functions to issue these commands
depending on which buttdn is pushed. To allow the user type in Tcl commands in addition to
selecting buttons from the interface and to print out feedback from UltraSonix, we also added
callback functions to monitor the standar input and the pipe /tmp/to-console and added callbacks
to handle them. (see mconfig.c) When input is detected from stdin, the callback function readInput
simply copies a line to a buffer and then send it to UltraSonix via the /tmp/from-console pipe.
When any activity is detected on the ftmp/to-console pipe, the callback function
printMercatorQutput is called to dump outputs from UltraSonix to standard output.

Another important issue when implementing an GUI console is that the console is usually started
before or at the same time as UltraSonix. This means that UltraSonix will not be able to detect its
existence right away. To solve this problem the GUI console must issue a connect command
explicitly to UltraSonix, with its own window id, so that UltraSonix will also be able to navigate
the console. The connect command is issued to UltraSonix via the /tmp/from-console pipe, as other
console commands, and it should be issued after the pipes have been created and also after the GUI
have been managed or popped up to the desktop in order to get its window id.

TN e g g

11.0 Appendix: TCL Command Reference

(Note that words which are not enclosed in brackets '<' and '>' are keywords. Words enclosed in
brackets are variables. Words which are enclosed by square brackets '[' and ']' are optional.)

11.1 TCL Interfaces to C++ Methods

This section contains built-in TCL commands which are implemented in the files Interp.h and
Interp.cc. These commands generally parse the expected TCL syntax and then call the
corresponding C++ methods. -

11.1.1 Diagnostic Output

The Error command can be used to display an error message, get the current error message level
and set the error message level. To display an error message:

TTET I el

11.1.1.1 Displaying Error Messages
Error <error level> <proc name> [<msg 1> <msg 2> <msg 3> ...]
<error level> sets the error level of the error messages in the call. If it is less than or equal to the

current error level, then the messages will be displayed. Possible values for <error level>, in
increasing order, are:

EL_ABORT (abort after displaying the error messages)

EL_FATAL (exit after displaying the error messages)

EL_ERROR (messages are the result of an error condition)

EL_WARNING (warning messages)

EL_STATUS (status messages)

EL_INFORMATIONAL (informational messages) ‘
EL_DEBUG (debugging messages) !

<proc name> is the name of the procedure which contains the Error call. <msg n> are the actual

€ITor messages.
’

11.1.1.2 Getting and Setting Error Levels

Error level [<err level>]

i e

UltraSonix maintains a current error level, which determines which error messages are displayed.
All messages with error levels equal to or less than the current error level will be displayed. In
addition to the seven possible values for error level, there are two additional values which can be
set:

EL_NO_MESSAGES (do not display any debugging or error messages)
EL_ALL_MESSAGES (any messages)

11.1.2 Operations on Clients

This section describes TCL operations that can be used to determin the currently active client and
switch among clients.

11.1.2.1 Determining the Current Client

currentClient

The currentClient command returns a unique identifier for the current client (which can be used in
calls to other TCL commands that support client operations), or the string "NULL" if there is no
current client.

11.1.2.2 Moving Between Clients

advanceClient
backupClient

These two commands cycle through the list of currently active clients. They have no return value.

11.1.2.3 Client Names
client name <client>

The client command is used to retrieve information about specified clients. Currently only the
"name" option is supported, which returns the name of the client as specified by the application
writer.

11.1.3 Operations on Objects
11.1.3.1 Determining the Current Object

currentObject
/

The currentObject command returns the name of the current object if there is one, or the string
"NULL" if there is no current object.
11.1.3.2 Converting Object Names

long2short <obj>
short2long <obj>

These two commands are used to convert between the "long" (Xrm-style, dot-notation) and “short"
(unique object identifier) names of XtObjects. They each return the complementary name.

11.1.4 Binding Events and Actions

11.1.4.1 Associating TCL Procedures with Events
bindevent [<objiclient>] pressirelease [<shiftictlimetalalt>] <key> <proc>

The bindevent command is used to associate a named TCL procedure with a particular key event.
The procedure will be executed automatically whenever the event occurs within the scope specified
by the arguments to bindevent.

The first argument to bindevent is optional, and can be an identifier for either an XtObject or a
client. If the argument is present, it indicates that the bind should be established only on the
particular object or client specified. If the argument is not present, the bind will be established
globally (that is, on all objects in all clients).

The next argument indicates whether the TCL procedure will be invoked on a key press or a key
release. The next argument indicates zero or more (optional) modifier keys to detect. Next, the
actual keysym is indicated (see /usr/openwin/include/X11/keysymdef.h for a list of keysyms).
Finally, the TCL procedure is named. This procedure will be executed whenever the indicated
keysym is either pressed or released, with the optional set of modifiers enabled, within the scope
indicated by the optional first argument.

11.1.4.2 Actions

addaction <proc>

The addaction command makes the named TCL procedure "visible" to the C++ action interface
used internally by UltraSonix. At key points, UltraSonix will "call out” to named actions when the
state of the interface model changes. To enable this callout, the addaction command must be used.
callaction <action> <arg0> <argl> <...>

The callaction command uses the C++ Action interface to invoke the named action with the

specified arguments. It provides a mechanism for TCL code to invoke the same actions as C++

code.
I

11.1.5 Using the Braille Terminal
11.1.5.1 Sending Text to the Braille Device

braille display "<row 1>" ["<row 2>" "<row3>" ...]
Sets the text buffer of the braille loadable object to <row 1> <row 2> <row 3>.
braille status <text>

Sets the status cells of the braille device to <text>.

11.1.5.2 Jump Scroll Mode
braille jumpScroll <on/off>

Turns the jump scroll mode on or off.

11.1.5.3 Setting Braille Translation Table
braille translate <table>

Sets the braille translation table to <table>.

11.1.5.4 Querying Braille Device Capabilities
braille cap <capability>

The following capabilities can be queried with this call:

displayCells (returns the number of display cells)

statusCells (returns the number of status cells)

highlightSupported (returns 1 if highlighting is supported, O otherwise)
hasCursorKeys (returns 1 if the device has cursor keys, 0 otherwise)
hasProgKey (returns 1 if the device has program keys, 0 otherwise)
hasHomeKey (returns 1 if the device has home keys, 0 otherwise)
otherKeys (returns 1 if the device has other key, 0 otherwise)

11.1.6 Console Operations

connectPipe
disconnectPipe

These two commands are used to either establish a connection to the console over a named pipe
(connectPipe), or break an existing connection to the console over a named pipe (disconnectPipe).

When issuing the connectPipe command, the console should already be running and blocked,
waiting on UltraSonix to attempt to connect to it.

If UltraSonix disconnects from its console, it will revert to standard input/output for debugging
messages. ’

11.1.7 Connecting to Clients

connect <winid>

The connect command is used to issue an explicit request for UltraSonix to initiate the connection
procedure on a specified window ID.

11.1.8 Key and Button Events

11.1.8.1 Using Keyboard Identification Mode

key announce [onloff]

This command enables or disables keyboard identification mode. While in keyboard identification
mode, all keyboard input is spoken directly, and is not processed by UltraSonix.

The key combination Shift-Ctrl-Q will also terminate keyboard identification mode.
11.1.8.2 Generating Keyboard Input to Applications
key <object> <key> [<shifticontrollmetalalt>] <pressireleaselboth> <stat>

This command is used to send synthetic keyboard events to an application. The events will be sent
to the window associated with the object specified by the <object> parameter. The <key>
parameter indicates the basic key to send; it is espressed as an X keysym (the string "Right"” is used
to indicate the Right arrow, for example. See /usr/openwin/include/X11/keysymdef.h for a list of
keysyms.) Next, an optional modifier parameter allows the caller to specify a modifier key, such
as shift, control, and so on.

The key command allows callers to generate presses and releases individually or, more commonly,
both sequentially. The next parameter specifies whether to send a press, a release, or both.

The final parameter, <stat>, indicates the current grab status of the key on the current object.
UltraSonix "grabs" the keys it needs for navigation away from applications. The keys that are
grabbed are determined by the "bindevent” commands present in the startup TCL files. UltraSonix
does not "remember" what keys are already grabbed; this is left up to the writer of TCL code.
You must pass either "1" or "0" as the <stat> parameter to indicate whether the key you are
generating is one that has already been grabbed or not.

If you are sending a key that is grabbed by UltraSonix, the key command will ungrab it, send the
required events, and then grab it again. If you send a key that has been grabbed without setting the
<stat> argument to "1" then UltraSonix may loop indefinately (the key will be sent to the
application, but the grab is still active so it is returned to UltraSonix, which is again passed to the
application, ...).

11.1.8.3 Generating Mouse Input to Applications
11.1.8.3.1 Button Events
button <object> [prcsslrclelase] [11213]

The button command generates button presses and releases to applications. The command allows
callers to specify whether a press or release is generated, and which button to generate (1, 2, or 3).

The optional "object” parameter indicates an explicit object to send the input to. If present, the
mouse will be warped to the indicated object and input will be sent there. If not present, the event
will be sent to the object currently under the pointer.

11.1.8.3.2 Moving the Cursor

relativemotion <x> <y>

The relativemotion command is used to move the on-screen cursor to a new location. The x and y

arguments indicate the offset to the new position, relative to the current position. Also note the
"xwin warp" command.

11.1.9 Retrieving Properties of the Model

The "modelManager” command is used to retrieve information from the off-screen model. There
are several options available to this command.

11.1.9.1 Parent/Child Relationships

modelManager parent <object>

The parent option returns the identifier for the parent of the specified object, or the string "NULL"
if the object has no parent.

modelManager children <object>

The children option returns a TCL list of all of the children of the current object, or an empty list if
the object has no children.

11.1.9.2 Object Location and Geometry

modelManager window <object>

The window option returns the actual X Window System window identifier for the window
associated with the specified object. Two special values may be returned: O indicates that the
object is not realized (that is, it has no window associated with it), and 2 indicates that the object is
a gadget (that is, it is a windowless widget).

modelManager x <object>

modelManager y <object>

modelManager width <object>

modelManager height <object>

modelManager borderWidth <object>

These options are used to return the X and Y location, width and height, and border width of the
specified object. The return values are in terms of pixels. X and Y are relative to the object’s
parent.

modelManager location <object>

The location object issues an explicit RAP request to retrieve the specified object's location. In
general this option should never be used, as it incurs a significant performance penalty. It may be
useful in some situations where the off-screen model is out-of-date with respect to the on-screen
display, however.

11.1.9.3 Names and Other Object Attributes

modelManager name <object>

The name option returns the name of the specified object, as given by the application writer.

modelManager class <object>

The class option returns the widget class of the specified object.

modelManager longname <object>

The longname option returns an "Xrm-style" dot-notation name for the specified object. The value
returned from this command may be used in a .Xdefaults file, or as an identifier in an object
template to refer to a specific widget.

modelManager mapped <object>
modelManager managed <object> -

These options return the string "TRUE" or "FALSE" depending on whether the specified object is
mapped or managed, respectively.

11.1.10 Generating Non-speech Audio Output

playsound <sound file> [<rate> <volume> <muffle> <looped> <delay>]

Plays <sound file>. If more than two arguments are supplied, it also sets the playing rate (O to
1.0), volume (0 to 100), muffle (O to 100?), looped (0 or 1) and delay (in milliseconds).

stopAllSounds
The stopAllSounds command stops all sounds currently playing on the audio device.
audio name

The audio command returns the name of the current audio device (for example, "netaudio”).

11.1.11 Shutting Down UltraSonix
quit

The quit command is used‘to terminate UltraSonix gracefully.

11.1.12 Accessing Resources
resource <obj> get <name>

The get option to the resource command retrieves the value of the named resource, in the named
object, from the off-screen model. It is presented as a string.

resource <obi> set <name> <value>
The set option to the resource command changes the value of the resource WITHIN THE

APPLICATION. This option should be used with extreme caution, as it is possible to break
applications with this command. It is also very expensive.

To work, a converter from string type to the native type of the resource must exist within the
application.

resource <obj> request <name>

The request option to the resource command issues an explicit RAP request to retrieve the value of
the specified resource. This option should almost never be used, as it is very expensive. It may be
useful in situations where application- or widget-writers update the value of resources in a way that
bypasses the RAP hooks in X.

resource <obj> list

The list option lists all of the resources, their types, and their values on the specified object.

11.1.13 Speech Output

11.1.13.1 Producing Speech

speak <text> [nointerupt]

This command sends <text> to the speech device. If the nointerupt keyword is not given, any
current speech will be stopped before <text> is spoken. If the keyword 'nointerupt' is given, then
<text> will be appended after any current speech.

11.1.13.1 Querying Speech Device Capabilities

speak cap <capability>

This command queries UltraSonix for specific capabilities of the speech device. Valid values for
<capability> are:

voices (returns a list of voices supported)

languages (returns a list of languages supported)

minRate (returns the minimum speech rate)

maxRate (returns the maximum speech rate)

gainSupported (returns 1 jf gain control is supported by the device,
0 otherwise)

11.1.14 Low-Level X Window Operations

This section describes the usage of the "xwin" command, and its associated options, to operate on
low-level X windows.

11.1.14.1 Using Properties

Xwin property set <winid> <property> <value>
xwin property get <winid> <property>

The property option of the xwin command allows the user to set and get the values of window
properties. THIS OPTION IS NOT FULLY IMPLEMENTED.

11.1.14.2 Using Selections

xwin selection set <selection> <value>
xwin selection get <selection>

The selection option of the xwin command allows the user to set and get named X selections (for
cut and paste). THIS OPTION IS NOT FULLY IMPLEMENTED.
11.1.14.3 Accessing Window Attributes

xwin window set <winid> <attribute> <value>
xwin window get <winid> <attribute>

The window command allows the caller to retrieve named window attributes from specified
windows, and to set those attributes. THIS OPTION IS NOT FULLY IMPLEMENTED.

11.1.14.4 Window and Pointer Management

Xwin warp <x> <y>
xwin warp <obj>

The warp option to the xwin command allows the caller to "warp" the mouse pointer to a specified
location on the screen. There are two forms of this command. The first specifies an absolute X,Y
coordinate pair (relative to the root, or background, window). The second specifies a specific
object to warp to. The cursor will be placed at coordinates (1,1) relative to the new object.

Xwin raise <obj>
xwin lower <obj>

The raise and lower options are used to raise or lower the window hierarchy containing the
specified object.

setFocus <obj>

/

The setFocus command sets the current location and window focus to the specified object, and sets
the current client to the client that contains this object.

NOTE that setFocus should be a suboption of the xwin command for orthogonality.

11.1.15 Using the ScreenReader
ScreenReader functionality is accessed via the "sreader” command. There are a number of options

to this command that can be used to change ScreenReader parameters, retrieve text from the model,
and query and update cursor positions.

11.1.15.1 Changing ScreenReader Parameters

sreader speed <speed>
sreader voice <voice>

The speed and voice options globally change the current speech rate and voice. Note that these
options affect the way UltraSonix speaks in every text area.

11.1.15.2 Using Cursors

sreader <obj> togglecursor

The togglecursor option toggles between edit and review mode in the specified object.

sreader <obj> togglefollow

The togglefollow option toggles whether the review cursor will follow the edit cursor as it moves
in the specified object.

sreader <obj> cursor

The cursor option returns the current cursor mode (either edit or review), the current follow mode
(either review-follows-edit, or not), and the current X, Y cursor position for the specified object.

sreader <obj> cursor mode

The cursor mode option returns the cursor mode (either review or edit) for the specified object.
sreader <obj> cursor coords

The cursor coords option returns the current cursor location.

sreader <obj> cursor <x> <y>

The cursor option, with X and Y arguments, sets the position of the current cursor in the specified
object to the provided location.

11.1.15.3 Using Filters

sreader <obj> filter

The filter option, with no arguments, returns the number of installed filters in the specified object.
sreader <obj> filter <filter>

The filter option provided with the number of a filter returns the status of the filter in the specified
object (either ON or OFF).

sreader <obj> filter <filter> <status>

The filter option used with the number of a filter and a status (either 1 or 0) sets the filter either on
or off, for the specified object.

sreader <obj> filter <filter> name

The filter name option returns the ASCII name of the filter whose ID is provided by the <filter>
argument.

11.1.15.4 Reading and Moving Through Text
sreader <obj> read <thisinextlprev> <charlwordllinelsentencelparagraphlscreen> [raw]

The read option returns the specified unit of text to the TCL interpreter. It does not advance the
cursor position. The text is returned from whichever cursor is currently active (either review or
edit).

The first argument specifies the object from which text should be returned. The argument after
"read" indicates whether the text chunk that is returned should be at the current cursor ("this"),
before the current cursor ("prev"), or after the current cursor ("next").

The next argument specifies the size of the text chunk to be retrieved. Text may be retrieved by
character, by word (words are separated by one of a set of delimiter characters), by sentence
(sentences are separated by one of a set of terminating characters), paragraphs (separated by blank
lines), lines, or screens (all currently visible text). The optional "raw" parameter indicates that the
text should be returned without filtering being applied to it. This option is useful for retrieving text
that will be sent to a braille device.

(Note that terminal and delimiter characters may be set via the C++ API to the ScreenReader class.
There is currently no TCL API for setting these characters.)

sreader <obj> move <thisinextlprev> <charlwordllinelsentencelparagraphlscreen>

The move option works the same as the read option, with the exception that it updates the position
of the currently active cursor. Move returns the text is has moved over. (Note that the move
option does not currently support the "raw" option.)

11.1.15.5 Miscellaneous ScreenReader Functions
sreader <obj> incoming |

The incoming option cycles through the "incoming text" modes (also known as echo modes).
Supported echo modes are:

character ~ Speak incoming text as each character is typed.

word Speak incoming text as each word is completed.

line Speak incoming text as each line is completed.

sentence Speak incoming text as each sentence is completed.
(Not currently supported.)

click Click as each character is typed. (Not currently
supported.)

sreader <obj> dumptext

Primarily useful for debugging, the dumptext option displays all text currently in the
ScreenReader's text model for the specified object.

11.1.16 Miscellaneous Text-Related Functions
11.1.16.2 Determining the Location of Text

getTextVertCoord <obj>
getTextHorizCoord <obj>

These two commands return the pixel location of the current cursor in the text area specified by the
object parameter. The location is expressed as a relative offset within the text area.

11.1.16.1 Debugging the Text Model
textrepdebug <obj> [onloff]

The textrepdebug command provides a visual debugging tool for the text model. To enable the
TextRep debugging window for a particular object, pass the name of the object and the "on"
parameter to textrepdebug. If the object supports text mode, a new window will be created which
provides a representation of what UltraSonix "thinks" is in the text area. Issue the "off" parameter
to disable text rep debugging.

11.1.17 Logging User Activities

UltraSonix provides a number of commands to support logging and tracing of interactive sessions.
These commands can be used to evaluate user performance when using the system. b

StartTimer <file> it
The StartTimer command opens the specified file and writes the current time of day information .
into it. It is assumed that this file will later be used to collect timed performance data via the
logtoFile command.

logtoFile <file> <arg0> <argl> <...>

The logtoFile command writes the current time and all of its command line arguments to the file
named by the first argument.

11.1.18 Template and Configuration Management

This section describes the commands used to interact with the template and configuration
subsystems in UltraSonix.

11.1.18.1 Using Template Values From TCL

wtemplate <obj> <attribute>

The wtemplate command retrieves template attributes from the "widget" templates (class and object
templates, as opposed to application templates). The user supplies the name of an object, and an

attribute to retrieve. The command will return the value of the attribute, searching in both object
and class template lists, and running any TCL procedures necessary.

o

NOTE that there is no corresponding atemplate (for app template) command (although there should
be).

11.1.18.2 Writing New Template Files
writeout <templatename> <filename> [<AICIO>]

The writeout command is used to store the internal (C++ object) representation of a template to
long-term storage. The result is a new template file, which is parsable and loadable by UltraSonix.

The first argument is the name of the template. This name should be appropriate for the type of
template file you are writing (dot-notation for object templates, class name for class templates,
application name for app templates). The next argument is the filename to write the template to.

The final (optional) argument is a specifier indicating whether the template is an application, class,
or object template. If omitted, the writeout command will search for an existing template with the
specified name, determine its type, and use that type when writing the template. We recommend
always specifying the template type explicitly.

11.1.18.3 Retrieving Configuration Attributes

configVal <attr>

The configVal command retrieves attributes from the configuration file. This command is currently
quite broken, and will only return the errorLevel attribute.

11.1.18.4 Loading Files

loadattrib

loadconfig

loadtemplates
loadall

The loadattrib, loadconfig; and loadtemplates commands cause UltraSonix to reload its attribute,
configuration, and template information from the locations it was loaded from previously.

The loadall command forces a reload of all startup files.

11.2 "Pure" TCL Commands

These are procedures which are implemented in TCL and are thus interpreted at run time. Only the
most important of these are described here; see the TCL files for more details.

11.2.1 Audio
Audio <node> <delay>
The Audio procedure (defined in audio.tcl) is responsible for playing the audio clip associated with

a given object (specified by node), at a given delay. This procedure will retrieve any necessary
widget-specific information to generate the correct sound.

e

AudioOn
AudioOff

These procedures will mute or unmute the non-speech audio from UltraSonix (mute state is
controlled by a TCL global variable).
11.2.2 Interface Helpers

Select <node>

The Select procedure generates a mouse press-release pair on the object specified by the node
argument.

Novice
Intermediate
Expert

These procedures set the user level to either novice, intermediate, or expert. The notion of "user
levels” is only maintained by the TCL code as a global variable that is checked by the various other
TCL procedures. The C++ side of UltraSonix knows nothing about user levels.

Preview
Produce an audio preview of the current object, if it is a container.

Info

Produce the informational non-speech and speech output for the current object.

HearPath

Produce a non-speech audio cue of the path from the top of the widget tree to the current location.

JumpBack
JumpForward

These procedures jump to the first or last object in a container.

11.2.3 Navigation
GoTo <node>

Move immediately to the specified node.

NavUp
NavDown
NavLeft
NavRight

These procedures are responsible for the basic inter-object navigation used by UltraSonix. They
make an attempt to discard extraneous levels in the hierarchy.

NavAppRight
NavAppLeft

Move between applications.

11.2.4 Text Mode
ToggleCursorMode
ToggleFollowMode
ToggleFilterMode
FilterModeOn
FilterModeOff
AnnounceFilterMode
ChangeTextMode
These procedures are responsible for calling into the C++ layer to implement various cursor and
filtering functions.
11.2.5 Miscellaneous
widgetTree <outfile>

The widgeTree procedure dumps the entire widget hierarchy containing the current object to the
specified file.

12.0 Appendix: RAP Protocol Specification

See the following World Wide Web page for the RAP specification:
http://www.cc.gatech.edu/gvu/multimedia/x-agent/RAPBack.html
13.0 Appendix: Known Bugs

» There is sometimes a delay (buffering problem?) when popups are created. The user must
navigate into the object before sounds are flushed.

¢ UltraSonix does not rendezvous with clients created with UIM/X. Problem is with how
UIM/X creates its toplevel shells.

¢ Scrollbars are not used.

» When UltraSonix detects a new window being mapped on the root window, it should raise the
current client to ensure that focus is not lost.

* Use of OpenWindows in left-handed mode breaks synthetic mouse input. UltraSonix should
detect left-handed mode and generate events accordingly.

If the last object in a client is unmapped or destroyed (but the client remains running)
UltraSonix should select a new client to move to. It currently does not. (But we've never
actually seen any applications that destroy all their widgets but remain active.)

ProtoTextRep cannot support empty text areas well, because of it's dependence on detection of
interline spacing.

o .

The client-side converter CvtXmStringTableToString() doesn't work. Hence we cannot
download XmStringTable resources into UltraSonix.

There is inconsistent usage of CheckIsShell and IsTopLevel in RAP.cc.

NumChildrenMuffle in templateprocs.tcl does not check for divide by zero (breaks on =
containers with no children).

UltraSonix has no way to block waiting on a RAP request to return. Hence, things like
“conservative" retrievals of resource values that may be out-of-sync are impossible.

We're still just sending button presses for selection. We need to get the translation table out of
the widgets and send the *appropriate* events for selection instead. “

Right now we can only have one action bound to a particular name. It may be useful to
support multiple actions, possibly trom different Action subclasses, associated with a name.

The bindevent command only understands X protocol events, not events from other input
sources (such as a braille keyboard, external keypad, or speech recognizer). This causes some
hackery in the loadable modules that support input.

UltraSonix should support a "collaborative” mode where a sighted user can use the mouse to
change UltraSonix' idea of where the current context is.

The console should include a command line that accepts regular Unix commands, and executes
them with an LD_LIBRARY_PATH appropriate for starting under UltraSonix.

Iconified applications are not handled well.
Copy/paste, and drag/drop are not supported.

Resource converters (for the ResourceTypeManager) should by dynamically loadable so that
they can be created without needing to recompile UltraSonix.

An interactive customization/keybinding/template-editing facility would be nice.
Text areas modeled via ProtoTextRep may not be cleared appropriately.

If UltraSonix generates a very large amount of debugging output to the console, the console
may die unexpectedly.

Repeatedly hitting the buttons on the console very quickly may hang the console.
Blanks added as "padding" to the text model (spaces at the ends of lines and blank lines not

explicitly drawn by the application) may have different graphics context information than
surrounding text.

Detection of highlight changes across line boundaries does not work.

Detection of highlighting implemented via rectangle drawing (X_PolyFillRectangle) is not
supported.

16-bit text is not supported.
Menus are only supported via tear-offs.

ProtoTextRep does not support multiple fonts with different metrics in the same text area
(multiple fonts with the *same* metrics are supported however).

UltraSonix does not currently take advantage of information about spatial geometry of
interfaces. Hence, it does not understand overlapped widgets (as in dtcm) or widgets that are
invisible because they are clipped by their parents (as in dtfile).

Horizontal scrolling in text areas is not handled well by ProtoTextRep.

On keyboards with multiple sets of cursor keys (such as the Sun Type 5) navigation in edit
mode on applications without block cursor support may be off by one.

There are still occasional menu-related problems: sometimes UltraSonix will attempt to warp to
an unposted menu (the symptom is that the pointer goes to locatinn (0,0) on the screen).

